An iron-reduction-mediated cascade mechanism increases the risk of carbon loss from mineral-rich peatlands

2022 ◽  
Vol 172 ◽  
pp. 104361
Author(s):  
Lei Qin ◽  
Chris Freeman ◽  
Yuanchun Zou ◽  
Guodong Wang ◽  
Nathalie Fenner ◽  
...  
Keyword(s):  
2018 ◽  
Author(s):  
Matthew F. Kirk ◽  
◽  
Qusheng Jin ◽  
Theodore M. Flynn ◽  
Lydia H. Zeglin

2020 ◽  
Vol 13 (7) ◽  
pp. 769-779
Author(s):  
A. A. Sirin ◽  
D. A. Makarov ◽  
I. Gummert ◽  
A. A. Maslov ◽  
Ya. I. Gul’be
Keyword(s):  

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 880
Author(s):  
Andrey Sirin ◽  
Alexander Maslov ◽  
Dmitry Makarov ◽  
Yakov Gulbe ◽  
Hans Joosten

Forest-peat fires are notable for their difficulty in estimating carbon losses. Combined carbon losses from tree biomass and peat soil were estimated at an 8 ha forest-peat fire in the Moscow region after catastrophic fires in 2010. The loss of tree biomass carbon was assessed by reconstructing forest stand structure using the classification of pre-fire high-resolution satellite imagery and after-fire ground survey of the same forest classes in adjacent areas. Soil carbon loss was assessed by using the root collars of stumps to reconstruct the pre-fire soil surface and interpolating the peat characteristics of adjacent non-burned areas. The mean (median) depth of peat losses across the burned area was 15 ± 8 (14) cm, varying from 13 ± 5 (11) to 20 ± 9 (19). Loss of soil carbon was 9.22 ± 3.75–11.0 ± 4.96 (mean) and 8.0–11.0 kg m−2 (median); values exceeding 100 tC ha−1 have also been found in other studies. The estimated soil carbon loss for the entire burned area, 98 (mean) and 92 (median) tC ha−1, significantly exceeds the carbon loss from live (tree) biomass, which averaged 58.8 tC ha−1. The loss of carbon in the forest-peat fire thus equals the release of nearly 400 (soil) and, including the biomass, almost 650 tCO2 ha−1 into the atmosphere, which illustrates the underestimated impact of boreal forest-peat fires on atmospheric gas concentrations and climate.


Chemosphere ◽  
2021 ◽  
pp. 130983
Author(s):  
Yue Lu ◽  
Yingju Hu ◽  
Lin Tang ◽  
Qingqing Xie ◽  
Qian Liu ◽  
...  

2021 ◽  
pp. 1-9
Author(s):  
Janice L. Atkins ◽  
Luke C. Pilling ◽  
Christine J. Heales ◽  
Sharon Savage ◽  
Chia-Ling Kuo ◽  
...  

Background: Brain iron deposition occurs in dementia. In European ancestry populations, the HFE p.C282Y variant can cause iron overload and hemochromatosis, mostly in homozygous males. Objective: To estimated p.C282Y associations with brain MRI features plus incident dementia diagnoses during follow-up in a large community cohort. Methods: UK Biobank participants with follow-up hospitalization records (mean 10.5 years). MRI in 206 p.C282Y homozygotes versus 23,349 without variants, including T2 * measures (lower values indicating more iron). Results: European ancestry participants included 2,890 p.C282Y homozygotes. Male p.C282Y homozygotes had lower T2 * measures in areas including the putamen, thalamus, and hippocampus, compared to no HFE mutations. Incident dementia was more common in p.C282Y homozygous men (Hazard Ratio HR = 1.83; 95% CI 1.23 to 2.72, p = 0.003), as was delirium. There were no associations in homozygote women or in heterozygotes. Conclusion: Studies are needed of whether early iron reduction prevents or slows related brain pathologies in male HFE p.C282Y homozygotes.


Sign in / Sign up

Export Citation Format

Share Document