Double network self-healing chitosan/dialdehyde starch-polyvinyl alcohol film for gas separation

2019 ◽  
Vol 469 ◽  
pp. 213-219 ◽  
Author(s):  
Jiaoyu Ren ◽  
Hongyun Xuan ◽  
Liqin Ge
2020 ◽  
Author(s):  
Ehab Awad Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


2020 ◽  
Author(s):  
Ehab Awad Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


2021 ◽  
pp. 51563
Author(s):  
Zhouqiang Zhang ◽  
Zishuo Ye ◽  
Feng Hu ◽  
Wenbo Wang ◽  
Shoujing Zhang ◽  
...  

2020 ◽  
Author(s):  
Ehab Awad Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks is a nonreversible procedure, it is mandatory to adopt the proper cleaning technique which has the ability to remove undesired materials whilst preserving the original surface and, if present, the original ‘patina’ of the surface layer. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators-restorers. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behaviour, and the self-healing behaviour of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with non-polar solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators-restorers’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Ehab Al-Emam ◽  
Hilde Soenen ◽  
Joost Caen ◽  
Koen Janssens

Abstract Since cleaning of artworks may cause undesirable physicochemical alterations and is a nonreversible procedure, it is mandatory to adopt the proper cleaning procedure. Such a procedure should remove undesired materials whilst preserving the original surface. In this regard, numerous gels have been developed and exploited for the cleaning of various artwork surfaces. Lately, agarose (AG) and polyvinyl alcohol-borax (PVA-B) hydrogels have been widely employed as cleaning tools by conservators. Both hydrogels show some limitations in specific cleaning practices. In this work, we investigated the influence of including increased levels of agarose into PVA-B systems. For this reason, we performed a detailed characterization on the double network (DN) hydrogel including the chemical structure, the liquid phase retention, the rheological behavior, and the self-healing behavior of various PVA-B/AG double network hydrogels. These new hydrogels revealed better properties than PVA-B hydrogels and obviated their limitations. The inclusion of AG into PVA-B systems enhanced the liquid retention capacity, shape-stability, and mechanical strength of the blend. Furthermore, AG minimized the expelling/syneresis issue that occurs when loading PVA-B systems with low polarity solvents or chelating agents. The resultant double network hydrogel exhibits relevant self-healing properties. The PVA-B/AG double network is a new and useful cleaning tool that can be added to the conservators’ tool-kit. It is ideal for cleaning procedures dealing with porous and complex structured surfaces, vertical surfaces and for long time applications.


2021 ◽  
Vol 257 ◽  
pp. 117626
Author(s):  
Xiaoqin Shang ◽  
Qingling Wang ◽  
Jinghao Li ◽  
Guojie Zhang ◽  
Jianguo Zhang ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2000398
Author(s):  
Fei Liu ◽  
Wenyu Li ◽  
Hongting Liu ◽  
Teng Yuan ◽  
Yu Yang ◽  
...  

2021 ◽  
pp. 102450
Author(s):  
Shubin Li ◽  
Xiao Wang ◽  
Jiang Zhu ◽  
Zhenyu Wang ◽  
Lu Wang

Sign in / Sign up

Export Citation Format

Share Document