Argon gas cluster fragmentation and scattering as a probe of the surface physics of thermoset polymers

2020 ◽  
Vol 533 ◽  
pp. 147473
Author(s):  
Mykhailo Chundak ◽  
Claude Poleunis ◽  
Vincent Delmez ◽  
Hannah Jefford ◽  
Leila Bonnaud ◽  
...  
Author(s):  
H. Bethge

Besides the atomic surface structure, diverging in special cases with respect to the bulk structure, the real structure of a surface Is determined by the step structure. Using the decoration technique /1/ it is possible to image step structures having step heights down to a single lattice plane distance electron-microscopically. For a number of problems the knowledge of the monatomic step structures is important, because numerous problems of surface physics are directly connected with processes taking place at these steps, e.g. crystal growth or evaporation, sorption and nucleatlon as initial stage of overgrowth of thin films.To demonstrate the decoration technique by means of evaporation of heavy metals Fig. 1 from our former investigations shows the monatomic step structure of an evaporated NaCI crystal. of special Importance Is the detection of the movement of steps during the growth or evaporation of a crystal. From the velocity of a step fundamental quantities for the molecular processes can be determined, e.g. the mean free diffusion path of molecules.


1987 ◽  
Vol 152 (7) ◽  
pp. 449 ◽  
Author(s):  
L.M. Blinov ◽  
E.I. Kats ◽  
A.A. Sonin

2021 ◽  
Vol 23 (2) ◽  
Author(s):  
Philipp Umstätter ◽  
Herbert M. Urbassek

Abstract Fragmentation of granular clusters may be studied by experiments and by granular mechanics simulation. When comparing results, it is often assumed that results can be compared when scaled to the same value of $$E/E_{\mathrm{sep}}$$ E / E sep , where E denotes the collision energy and $$E_{\mathrm{sep}}$$ E sep is the energy needed to break every contact in the granular clusters. The ratio $$E/E_{\mathrm{sep}}\propto v^2$$ E / E sep ∝ v 2 depends on the collision velocity v but not on the number of grains per cluster, N. We test this hypothesis using granular-mechanics simulations on silica clusters containing a few thousand grains in the velocity range where fragmentation starts. We find that a good parameter to compare different systems is given by $$E/(N^{\alpha }E_{\mathrm{sep}})$$ E / ( N α E sep ) , where $$\alpha \sim 2/3$$ α ∼ 2 / 3 . The occurrence of the extra factor $$N^{\alpha }$$ N α is caused by energy dissipation during the collision such that large clusters request a higher impact energy for reaching the same level of fragmentation than small clusters. Energy is dissipated during the collision mainly by normal and tangential (sliding) forces between grains. For large values of the viscoelastic friction parameter, we find smaller cluster fragmentation, since fragment velocities are smaller and allow for fragment recombination. Graphic abstract


Author(s):  
Kiseki D Nakamura ◽  
Kentaro Miuchi ◽  
Shingo Kazama ◽  
Yutaro Shoji ◽  
Masahiro Ibe ◽  
...  

Abstract Migdal effect is attracting interests because of the potential to enhance the sensitivities of direct dark matter searches to the low mass region. In spite of its great importance, the Migdal effect has not been experimentally observed yet. A realistic experimental approach towards the first observation of the Migdal effect in the neutron scattering was studied with Monte Carlo simulations. In this study, potential background rate was studied together with the event rate of the Migdal effect by a neutron source. It was found that a table-top sized ~ (30cm)3 position-sensitive gaseous detector filled with argon or xenon target gas can detect characteristic signatures of the Migdal effect with sufficient rates (O(102 ~ 103) events/day). A simulation result of a simple experimental set-up showed two significant background sources, namely the intrinsic neutrons and the neutron induced gamma-rays. It is found that the intrinsic neutron background rate for the argon gas is acceptable level and some future study for the reduction of the gamma-rays from the laboratory would make the observation of the Migdal effect possible. The background for the xenon gas, on the other hand, is found to be much more serious than for the argon gas. Future works on the isotope separation as well as the reduction of the gamma-rays from the detector and laboratory will be needed before the Migdal effect observation for xenon gas case.


1916 ◽  
Vol 181 (5) ◽  
pp. 704-705
Author(s):  
G. Stanley Meikle
Keyword(s):  

1993 ◽  
Vol 173 (2) ◽  
pp. 153-159 ◽  
Author(s):  
François Chapeau-Blondeau ◽  
Victor Teboul ◽  
Jacques Berrué ◽  
Yves le Duff

Sign in / Sign up

Export Citation Format

Share Document