bulk structure
Recently Published Documents


TOTAL DOCUMENTS

184
(FIVE YEARS 32)

H-INDEX

30
(FIVE YEARS 4)

2022 ◽  
Vol 92 (3) ◽  
pp. 481
Author(s):  
М.В. Кнатько ◽  
М.Н. Лапушкин

Thermal ionization of methenamine (C6H12N4) on the surface of the NaAux intermetallic compound has been studied. It has been established that the processes of decomposition, desorption and ionization of adsorbed compounds, thermally stimulated on the surface, proceed due to the accumulation of energy at the degrees of freedom of the adsorption complex, including the adsorbed compound and a solid, by the mechanism of monomolecular decomposition reactions. In this case, the decomposition of the adsorption complex is accompanied by the desorption of ions that are not in thermal equilibrium with the solid. The uniformity of the temperature dependences of the ion current and their distribution over two groups allowed us to conclude that ions are desorbed from the surface, which correspond to the decays of individual adsorbed molecules, as well as the decays of dimers formed on the surface. The decay of methenamine molecules during thermal ionization occurs in the same way as their decay in vacuum during electron ionization, which indicates the preservation of the bulk structure of methenamine molecules during adsorption and a significant lifetime of the excited state of compounds on NaAux.


Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6472
Author(s):  
Natalie M. Stuart ◽  
Karl Sohlberg

Though γ-Al2O3 has played a central role in heterogeneous catalysis for more than two centuries, its microstructure continues to be debated. Specifically, the positions of Al3+ cations within the crystal lattice have been discussed extensively in the literature. Many authors uphold that the cations primarily occupy spinel sites, while others endorse the occupation of non-spinel sites. The other main point of dispute is whether the structure contains interstitial hydrogen, with some authors supporting a partially hydrated model and others claiming that the structure must be completely dehydrated. The use of different structural models directly affects the predicted geometry of γ-Al2O3 at the surface, which in turn has significant implications for its catalytic utility. A comparison of theoretical data to experimental infrared (IR), X-ray diffraction (XRD), and selected area electron diffraction (SAED) evidence suggests that γ-Al2O3 features cations primarily in spinel positions, while IR and nuclear magnetic resonance (NMR) data indicate that interstitial hydrogen is present within the bulk structure.


2021 ◽  
Vol 9 ◽  
Author(s):  
Gregor Koch ◽  
Michael Hävecker ◽  
Pierre Kube ◽  
Andrey Tarasov ◽  
Robert Schlögl ◽  
...  

A Sm-deficient Sm0.96MnO3 perovskite was prepared on a gram scale to investigate the influence of the chemical potential of the gas phase on the defect concentration, the oxidation states of the metals and the nature of the oxygen species at the surface. The oxide was treated at 450°C in nitrogen, synthetic air, oxygen, water vapor or CO and investigated for its properties as a catalyst in the oxidative dehydrogenation of propane both before and after treatment. After treatment in water vapor, but especially after treatment with CO, increased selectivity to propene was observed, but only when water vapor was added to the reaction gas. As shown by XRD, SEM, EDX and XRF, the bulk structure of the oxide remained stable under all conditions. In contrast, the surface underwent strong changes. This was shown by AP-XPS and AP-NEXAFS measurements in the presence of the different gas atmospheres at elevated temperatures. The treatment with CO caused a partial reduction of the metals at the surface, leading to changes in the charge of the cations, which was compensated by an increased concentration of oxygen defects. Based on the present experiments, the influence of defects and concentration of electrophilic oxygen species at the catalyst surface on the selectivity in propane oxidation is discussed.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1649
Author(s):  
Gemechis D. Degaga ◽  
Sumandeep Kaur ◽  
Ravindra Pandey ◽  
John A. Jaszczak

Vertically stacked, layered van der Waals (vdW) heterostructures offer the possibility to design materials, within a range of chemistries and structures, to possess tailored properties. Inspired by the naturally occurring mineral merelaniite, this paper studies a vdW heterostructure composed of a MoS2 monolayer and a PbS bilayer, using density functional theory. A commensurate 2D heterostructure film and the corresponding 3D periodic bulk structure are compared. The results find such a heterostructure to be stable and possess p-type semiconducting characteristics. Due to the heterostructure’s weak interlayer bonding, its carrier mobility is essentially governed by the constituent layers; the hole mobility is governed by the PbS bilayer, whereas the electron mobility is governed by the MoS2 monolayer. Furthermore, we estimate the hole mobility to be relatively high (~106 cm2V−1s−1), which can be useful for ultra-fast devices at the nanoscale.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 814
Author(s):  
Esra Altıok ◽  
Tuğçe Zeynep Kaya ◽  
Enver Güler ◽  
Nalan Kabay ◽  
Marek Bryjak

Salinity gradient energy is a prominent alternative and maintainable energy source, which has considerable potential. Reverse electrodialysis (RED) is one of the most widely studied methods to extract this energy. Despite the considerable progress in research, optimization of RED process is still ongoing. In this study, effects of the number of membrane pairs, ratio of salinity gradient and feed velocity on power generation via the reverse electrodialysis (RED) system were investigated by using Fujifilm cation exchange membrane (CEM Type 2) and FujiFilm anion exchange membrane (AEM Type 2) ion exchange membranes. In the literature, there is no previous study based on a RED system equipped with Fujifilm AEM Type II and CEM Type II membranes that have homogeneous bulk structure. Using 400 µm of intermembrane distance, maximum obtainable power density by 5 pairs of Fujifilm membranes at 1:45 salinity ratio and with a linear flow rate of 0.833 cm/s was 0.426 W/m2.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Wonshik Kyung ◽  
Choong H. Kim ◽  
Yeong Kwan Kim ◽  
Beomyoung Kim ◽  
Chul Kim ◽  
...  

AbstractRotation of MO6 (M = transition metal) octahedra is a key determinant of the physical properties of perovskite materials. Therefore, tuning physical properties, one of the most important goals in condensed matter research, may be accomplished by controlling octahedral rotation (OR). In this study, it is demonstrated that OR can be driven by an electric field in Sr2RuO4. Rotated octahedra in the surface layer of Sr2RuO4 are restored to the unrotated bulk structure upon dosing the surface with K. Theoretical investigation shows that OR in Sr2RuO4 originates from the surface electric field, which can be tuned via the screening effect of the overlaid K layer. This work establishes not only that variation in the OR angle can be induced by an electric field, but also provides a way to control OR, which is an important step toward in situ control of the physical properties of perovskite oxides.


Author(s):  
Shu Zhang ◽  
Wentao Deng ◽  
Roya Momen ◽  
Shouyi Yin ◽  
Jun Chen ◽  
...  

Spinel LiMn2O4 is a promising cathode material for lithium-ion batteries ascribed to its steady bulk structure and abundant manganese sources. Nevertheless, grievous capacity decay due to the Jahn-Teller effect and...


2021 ◽  
pp. 284-284
Author(s):  
Vojislav Mitic ◽  
Branislav Randjelovic ◽  
Srdjan Ribar ◽  
Maria Cebela ◽  
Markus Mohr ◽  
...  

The Nanocrystaline diamonds are very important biomedical material with variety of applications. The experimental procedures and results have been done in the Institute of Functional Nanosystems at the University Ulm (Germany). There is an existing biocompatibility of the diamond layers, selectively improved by biomimetic 3D patterns structuring. Based on that, we have been inspired to apply the graph theory approach in analysing and defining the physical parameters within the structure of materials structure samples. Instead the parameters values, characteristic at the samples surface, we penetrate the graphs deeply in the bulk structure. These values could be only, with some probability, distributed through the microstructure what defines not enough precious parameters values between the microstructure constituents, grains and pores. So, we originally applied the graph theory to get defined the physical parameters at the grains and pores levels. This novelty, in our paper, we applied for thermophysical parameters, like thermoconductiviy. By graph approach we open new frontiers in controlling and defining the processes at microstructure relations. In this way, we can easily predict and design the structure with proposed parameters.


Author(s):  
Malik Waqar Arshad ◽  
Dong Hun Kim ◽  
Young-Woo You ◽  
Soo Min Kim ◽  
Iljeong Heo ◽  
...  

The IrRu alloy offered optimal energetics for NO reduction by CO. The ensemble effect plays a key role in promoting the reactivity of the IrRu alloy. Making the IrRu surface alloy is better for CO-SCR than forming an alloy over the bulk structure.


Sign in / Sign up

Export Citation Format

Share Document