scholarly journals Enhanced photocatalytic degradation of organic pollutants and hydrogen production by a visible light–responsive Bi2WO6/ZnIn2S4 heterojunction

2020 ◽  
pp. 148885
Author(s):  
Auttaphon Chachvalvutikul ◽  
Tawanwit Luangwanta ◽  
Samuel Pattisson ◽  
Graham J. Hutchings ◽  
Sulawan Kaowphong
Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4079
Author(s):  
Radhalayam Dhanalakshmi ◽  
Nambi Venkatesan Giridharan ◽  
Juliano C. Denardin

Magnetic-field-accelerated photocatalytic degradation of the phenol red (PR) as a model organic pollutant was studied using rare-earth elements modified BiFeO3 (Bi1−xRxFeO3 (R = Ce, Tb; x = 0.0, 0.05, 0.10 and 0.15); BFO: RE) nanostructures. The nanostructures were prepared via the hydrothermal process and their morphological, structural, functional, optical and magnetic features were investigated in detail. The effect of magnetic fields (MFs) on photocatalysis were examined by applying the different MFs under visible light irradiation. The enhanced photodegradation efficiencies were achieved by increasing the MF up to 0.5T and reduced at 0.7T for the compositions x = 0.10 in both Ce and Tb substituted BFO. Further, mineralization efficiencies of PR, reproducibility of MF-assisted photocatalysis, stability and recyclability of BFO: RE nanostructures were also tested.


2017 ◽  
Vol 7 (17) ◽  
pp. 3702-3706 ◽  
Author(s):  
Chenying He ◽  
Xia Li ◽  
Yahui Li ◽  
Junfang Li ◽  
Guangcheng Xi

Uniform Au–WO3 porous hollow spheres have been synthesized on a large-scale by a general in situ reaction. The hybrid materials exhibit excellent activity for visible-light photocatalytic degradation of organic pollutants.


Sign in / Sign up

Export Citation Format

Share Document