Insights into the mechanism of ethanol conversion into 1,3-butadiene on Zr-β zeolite

2021 ◽  
pp. 152212
Author(s):  
Minhua Zhang ◽  
Xinyue Guan ◽  
Jianyu Zhuang ◽  
Yingzhe Yu
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yoottapong Klinthongchai ◽  
Seeroong Prichanont ◽  
Piyasan Praserthdam ◽  
Bunjerd Jongsomjit

AbstractMesocellular foam carbon (MCF-C) is one the captivating materials for using in gas phase dehydrogenation of ethanol. Extraordinary, enlarge pore size, high surface area, high acidity, and spherical shape with interconnected pore for high diffusion. In contrary, the occurrence of the coke is a majority causes for inhibiting the active sites on catalyst surface. Thus, this study aims to investigate the occurrence of the coke to optimize the higher catalytic activity, and also to avoid the coke formation. The MCF-C was synthesized and investigated using various techniques. MCF-C was spent in gas-phase dehydrogenation of ethanol under mild conditions. The deactivation of catalyst was investigated toward different conditions. Effects of reaction condition including different reaction temperatures of 300, 350, and 400 °C on the deactivation behaviors were determined. The results indicated that the operating temperature at 400 °C significantly retained the lowest change of ethanol conversion, which favored in the higher temperature. After running reaction, the physical properties as pore size, surface area, and pore volume of spent catalysts were decreased owing to the coke formation, which possibly blocked the pore that directly affected to the difficult diffusion of reactant and caused to be lower in catalytic activity. Furthermore, a slight decrease in either acidity or basicity was observed owing to consumption of reactant at surface of catalyst or chemical change on surface caused by coke formation. Therefore, it can remarkably choose the suitable operating temperature to avoid deactivation of catalyst, and then optimize the ethanol conversion or yield of acetaldehyde.


Author(s):  
Takashi Yamamoto ◽  
Akihito Kurimoto ◽  
Riona Sato ◽  
Shoki Katada ◽  
Hirotaka Mine ◽  
...  

Ethanol conversion by Ga2O3-ZrO2 solid solution was examined in the temperature range 573–773 K, and acetone/isobutene formation was confirmed under cofeeding of H2O vapor. The reaction pathway was empirically investigated...


Author(s):  
Pavel Mayorov ◽  
Elena Asabina ◽  
Anna Zhukova ◽  
Diana Osaulenko ◽  
Vladimir Pet’kov ◽  
...  

2011 ◽  
Vol 398 (1-2) ◽  
pp. 59-65 ◽  
Author(s):  
Leandro Martins ◽  
Dilson Cardoso ◽  
Peter Hammer ◽  
Teresita Garetto ◽  
Sandra H. Pulcinelli ◽  
...  

2021 ◽  
Vol 132 (2) ◽  
pp. 907-919
Author(s):  
O. Shtyka ◽  
Z. Dimitrova ◽  
R. Ciesielski ◽  
A. Kedziora ◽  
G. Mitukiewicz ◽  
...  

AbstractEthanol steam reforming was studied over Ni supported catalysts. The effects of support (Al2O3, Al2O3–ZnO, and Al2O3–CeO2), metal loading, catalyst activation method, and steam-to-ethanol molar feed ratio were investigated. The properties of catalysts were studied by N2 physisorption, TPD-CO2, X-ray diffraction, and temperature programmed reduction. After activity tests, the catalysts were analyzed by TOC analysis. The catalytic activity measurements showed that the addition either of ZnO SSor CeO2 to alumina enhances both ethanol conversion and promotes selectivity towards hydrogen formation. The same effects were observed for catalysts with higher metal loadings. High process temperature and high water-to-ethanol ratio were found to be beneficial for hydrogen production. An extended catalyst stability tests showed no loss of activity over 50 h on reaction stream. The TOC analysis of spent catalysts revealed only insignificant amounts of carbon deposit.


2016 ◽  
Vol 127 (1) ◽  
pp. 319-334 ◽  
Author(s):  
Alexandru Popa ◽  
Viorel Sasca ◽  
Orsina Verdes ◽  
Catalin Ianasi ◽  
Radu Banica

Sign in / Sign up

Export Citation Format

Share Document