Analytical prediction of pressure loss through a sudden-expansion in two-phase pneumatic conveying lines

2009 ◽  
Vol 20 (1) ◽  
pp. 48-54 ◽  
Author(s):  
Mehmet Yasar Gundogdu ◽  
Ahmet Ihsan Kutlar ◽  
Hasan Duz
Author(s):  
Shinji Honami ◽  
Wataru Tsuboi ◽  
Takaaki Shizawa

This paper presents the effect of flame dome depth on the total pressure performance and flow behavior in a sudden expansion region of the combustor diffuser without flow entering the dome head. The mean velocity and turbulent Reynolds stress profiles in the sudden expansion region were measured by a Laser Doppler Velocitmetry (LDV) system. The experiments show that total pressure loss is increased, when flame dome depth is increased. Installation of an inclined combuster wall in the sudden expansion region is suggested from the viewpoint of a control of the reattaching flow. The inclined combustor wall is found to be effective in improvement of the diffuser performance. Better characteristics of the flow rate distribution into the branched channels are obtained in the inclined wall configuration, even if the distorted velocity profile is provided at the diffuser inlet.


2021 ◽  
Author(s):  
Frederic Maurer ◽  
Trond Leiv Toftevaag ◽  
Jonas Kristiansen Nøland

This paper presents the exact transient solution to the unbalanced and balanced faults in the doubly-fed induction machine (DFIM). Stator currents, rotor currents, and stator fluxes have been validated using simulation and experiment. The work is meant to strengthen and fasten the predictability of large DFIMs in the design stage to comply with mechanical constraints or grid fault issues. Moreover, the analytical approach reduces the computational costs of large-scale stability studies and is especially suited to the initial phase where a plethora design computations must be carried out for the DFIM before it is checked for its transient interaction with the power system. The possibility to dynamically estimate DFIM performance is simplified by original equations derived from first principles. First, a case study of a large 265.50 MVA DFIM is used to verify the proposed "large machine approximation" using simulation, achieving an exact match. Then, laboratory measurements were conducted on a 10.96 kVA and a 1.94 kVA DFIM to validate the transient current peaks predicted in the proposed analytic expressions for two-phase and three-phase faults, respectively.


2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Mustakim Mustakim ◽  
Indarto Indarto ◽  
Purnomo Purnomo

This research aims to reduce the effect of pressure fluctuations intensity on the sudden expansion of two phase flow of air - water in the same direction with the horizontal placement of the ring. Measurements done by installing a differential pressure transducer device that is placed on pressure points before and after sudden expansion. Output voltage signal recorded by a digital storage osciloscope. Tests conducted on water discharge 0.000038 m 3 / s; 0.000078 m 3 / s; 0.000116 m 3 / s; 0.000154 m 3 / s; 0.000198 m 3 / s; 0.000244 m 3 / s; 0.000284 m 3 / s and air flow 0.000065 m 3 / s; 0.00013 m 3 / s; 0.000195 m 3 / s; 0.000255 m 3 / s; 0.00032 m 3 / s; 0.000385 m 3 / s; 0.00045 m 3 / s. Results showed that if the total mass flow rate increases the pressure drop increases. Installation of the ring can reduce the pressure fluctuations intensity, the most effective installation of the ring using the ring the same diameter. Flow path is generally slug and plug flow pattern.


2000 ◽  
Vol 71 (5) ◽  
pp. 153-160 ◽  
Author(s):  
Natsuo Hatta ◽  
Masaaki Omodaka ◽  
Fumitaka Nakajima ◽  
Hitoshi Fujimoto ◽  
Hirohiko Takuda

Author(s):  
John Wesley Coleman

This paper presents the results of an experimental investigation of two-phase pressure loss of R134a in microchannel headers using various end-cut techniques. Novel experimental techniques and test sections were developed to enable the accurate determination of the minor losses without obfuscating the problem with a lengthwise pressure gradient. This technique represents a departure from approaches used by other investigators that have extrapolated minor losses from air-water experiments and the combined effects of expansion, contraction, deceleration, and lengthwise pressure gradients. Pressure losses were recorded over the entire range of qualities from 100% vapor to 100% liquid. In addition, the tests were conducted for five different refrigerant mass fluxes between 185 kg/m2-s and 785 kg/m2-s using two differnt end-cut techniques. More than 790 data points were recorded to obtain a comprehensive understanding of the effects of mass flux and quality on minor pressure losses. High accuracy instrumentation such as coriolis mass flowmeters, RTDs, pressure transducers, and real-time data analyses were used to ensure accuracy in the results. The results show that many of the commonly used correlations for estimating two-phase pressure losses significantly underpredict the pressure losses found in compact microchannel tube headers. Furthermore, the results show that the end-cut technique can substantially affect the pressure losses in microchannel headers. A new model for estimating the pressure loss in microchannel headers is presented and a comparison of the end-cut techniques on the minor losses is reported.


Sign in / Sign up

Export Citation Format

Share Document