scholarly journals PENGURANGAN INTENSITAS FLUKTUASI TEKANAN PADA PEMBESARAN MENDADAK ALIRAN UDARA – AIR SEARAH HORISONTAL DENGAN PENEMPATAN RING

2016 ◽  
Vol 1 (1) ◽  
Author(s):  
Mustakim Mustakim ◽  
Indarto Indarto ◽  
Purnomo Purnomo

This research aims to reduce the effect of pressure fluctuations intensity on the sudden expansion of two phase flow of air - water in the same direction with the horizontal placement of the ring. Measurements done by installing a differential pressure transducer device that is placed on pressure points before and after sudden expansion. Output voltage signal recorded by a digital storage osciloscope. Tests conducted on water discharge 0.000038 m 3 / s; 0.000078 m 3 / s; 0.000116 m 3 / s; 0.000154 m 3 / s; 0.000198 m 3 / s; 0.000244 m 3 / s; 0.000284 m 3 / s and air flow 0.000065 m 3 / s; 0.00013 m 3 / s; 0.000195 m 3 / s; 0.000255 m 3 / s; 0.00032 m 3 / s; 0.000385 m 3 / s; 0.00045 m 3 / s. Results showed that if the total mass flow rate increases the pressure drop increases. Installation of the ring can reduce the pressure fluctuations intensity, the most effective installation of the ring using the ring the same diameter. Flow path is generally slug and plug flow pattern.

2021 ◽  
Author(s):  
Ghofrane Sekrani ◽  
Jean-Sebastien Dick ◽  
Sébastien Poncet ◽  
Sravankumar Nallamothu

Abstract Since most research investments in aeroengines have been targeted at the hot and cold sections, the oil system has remained an area poorly understood. Optimum sizing of the oil system can directly reduce the engine’s weight and specific fuel consumption while maximizing service life. The understanding of air/oil interaction in scavenge lines is required to influence the design of the oil systems and achieve those objectives. The challenge is in the existence of numerous possible flow regimes and phase interactions. In scavenge lines, a complex two-phase flow results from the interaction of sealing airflow and lubrication oil. Scavenge lines can have bends, junctions and sudden area changes which complicates their modeling by amplifying pressure gradients and turbulence generation, and causing the flow to change morphology (annular, slug, stratified, bubbly, mist, etc.). Several multiphase flow approaches have been developed to model two-phase flow in straight scavenge lines. However, up until now, no methodology is preferred by the community for simulating two-phase flow in such application. There are still many unknowns regarding the modeling of turbulence, phase interaction and the compressibility of immiscible mixtures such as air and oil. The present study compares the performance of two numerical models: Volume of Fluid (VOF) and Algebraic Interfacial Area Density (AIAD), for simulating the air/oil flow in a suddenly expanding scavenge line against the experimental data of Ahmed et al. [1–2]. The AIAD model is a two-fluid Eulerian approach newly implemented on Ansys Fluent. Discrepancies between the two models for predicting pressure loss and void fraction are evaluated and discussed into details. The flow regime before and after the sudden expansion is identified using iso-surfaces of the void-fraction and compared against visual data. Based on the results presented, recommendations are formulated for further work regarding the calibration of AIAD modeling parameters.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mariarosaria Falanga ◽  
Paola Cusano ◽  
Enza De Lauro ◽  
Simona Petrosino

AbstractIn this paper, we analyse the seismic noise at Ischia Island (Italy) with the objective of detecting the hydrothermal source signals taking advantage of the Covid-19 quiescence due to lockdown (strong reduction of anthropogenic noise). We compare the characteristics of the background noise in pre-, during and post-lockdown in terms of spectral content, energy release (RMS) and statistical moments. The continuous noise is decomposed into two independent signals in the 1−2 Hz and 2−4 Hz frequency bands, becoming sharpened around 1 Hz and 3 Hz respectively in lockdown. We propose a conceptual model according to which a dendritic system of fluid-permeated fractures plays as neighbour closed organ pipes, for which the fundamental mode provides the persistent whisper and the first higher mode is activated in concomitance with energy increases. By assuming reasonable values for the sound speed in low vapor–liquid mass fraction for a two-phase fluid and considering temperatures and pressures of the shallow aquifer fed by sea, meteoric and deep hydrothermal fluids, we estimate pipe lengths in the range 200–300 m. In this scheme, Ischia organ-like system can play both continuous whisper and transients, depending on the energy variations sourced by pressure fluctuations in the hydrothermal fluids.


2005 ◽  
Vol 127 (4) ◽  
pp. 755-762 ◽  
Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a ringlike wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions, namely, one with and one without this ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


Author(s):  
Joaquin E. Moran ◽  
David S. Weaver

An experimental study was conducted to investigate damping and fluidelastic instability in tube arrays subjected to two-phase cross-flow. The purpose of this research was to improve our understanding of these phenomena and how they are affected by void fraction and flow regime. The working fluid used was Freon 11, which better models steam-water than air-water mixtures in terms of vapour-liquid mass ratio as well as permitting phase changes due to pressure fluctuations. The damping measurements were obtained by “plucking” the monitored tube from outside the test section using electromagnets. An exponential function was fitted to the tube decay trace, producing consistent damping measurements and minimizing the effect of frequency shifting due to fluid added mass fluctuations. The void fraction was measured using a gamma densitometer, introducing an improvement over the Homogeneous Equilibrium Model (HEM) in terms of density and velocity predictions. It was found that the Capillary number, when combined with the two-phase damping ratio (interfacial damping), shows a well defined behaviour depending on the flow regime. This observation can be used to develop a better methodology to normalize damping results. The fluidelastic results agree with previously presented data when analyzed using the HEM and the half-power bandwidth method. The interfacial velocity is suggested for fluidelastic studies due to its capability for collapsing the fluidelastic data. The interfacial damping was introduced as a tool to include the effects of flow regime into the stability maps.


2020 ◽  
Vol 24 (Suppl. 1) ◽  
pp. 257-265
Author(s):  
Xiaopeng Shan ◽  
Geng Guan ◽  
Deming Nie

A two-phase lattice Boltzmann method was used to numerically study the boiling heat transfer related to the liquid-vapor transition induced by two heated plates. The effects of the gravity force as well as the separation between the heated plates were examined. The focus is on the bubble departure behavior resulting from the interaction between bubbles, which can be roughly classified into four types of pat?tern according to the separation between plates. In particular, it is shown that the bubble merging may take place twice in one cycle when the separation is close to a certain value. This is referred to as the pattern of alternation of bubble merging before and after departure, for which a sudden jump is seen in the bubble release period. Furthermore, the heat flux and the flow features are also shown to illustrate the behavior of heat transfer in the present system.


2017 ◽  
Vol 23 (2) ◽  
pp. 162 ◽  
Author(s):  
Jenny Day ◽  
Ann Clare Thorington Taylor ◽  
Peter Summons ◽  
Pamela Van Der Riet ◽  
Sharyn Hunter ◽  
...  

This paper reports phase one, conducted from March to June 2015, of a two-phase, qualitative descriptive study designed to explore the perceptions and experiences of older people before and after the introduction of consumer directed care (CDC) to home care packages (HCP) in Australia. Eligible consumers with a local HCP provider were mailed information about the study. Data collection occurred before the introduction of CDC and included face-to-face, in-depth interviews, summaries of interviews, field notes and reflective journaling. Semi-structured questions and ‘emotional touchpoints’ relating to home care were used to guide the interview conversation. Line-by-line data analysis, where significant statements were highlighted and clustered to reveal emergent themes, was used. Five older people, aged 81 to 91 years, participated in the study. The four emergent themes were: seeking quality and reciprocity in carer relationships; patchworking services; the waiting game; and technology with utility. Continuity of carers was central to the development of a trusting relationship and perceptions of care quality among older consumers. Care coordinators and workers should play a key role in ensuring older people receive timely information about CDC and their rights and responsibilities. Participants’ use of contemporary technologies suggests opportunities to improve engagement of HCP clients in CDC.


2005 ◽  
Vol 109 (1092) ◽  
pp. 65-74
Author(s):  
B. Timmins

Abstract This paper looks back on the designs and ambitions of ARA in resolving a long term acoustic noise problem which threatened ARA with closure. This paper today briefly looks back to the original issues but deals more fully with the later phases of a two phase project implementation and construction. ARA is now a truly ‘silent site’, where closure was once threatened, ARA has achieved the implementation of a bespoke noise reduction enclosure where 24-hour running has proved to be a reality. This paper looks at the design and construction phases, the ‘before and after’ noise footprints and at some of the financial benefits ARA has achieved. The ARA transonic wind tunnel is sited on an industrial estate on the north west perimeter of Bedford. When it was first built it was on an original farm site with no appreciable residential houses in close proximity. Since the early 1950s there has been considerable residential development around the ARA site resulting in the local householders complaining about the wind tunnel acoustic noise. In early 1999 ARA was obliged to consider several options for noise reduction measures to reduce the noise to within UK government statutory requirements. This paper deals briefly with the original noise nuisance characteristics and footprint, the noise reduction design and method that ARA selected and shows the construction phases, the further noise treatment ARA had to do on other major ancillary equipment to make ARA a truly quiet industrial site. The paper shows how ARA has utilised the resulting benefits of these investments to increase productivity and reduce costs, and the influence it has had on ARA’s financial health.


2000 ◽  
Vol 71 (5) ◽  
pp. 153-160 ◽  
Author(s):  
Natsuo Hatta ◽  
Masaaki Omodaka ◽  
Fumitaka Nakajima ◽  
Hitoshi Fujimoto ◽  
Hirohiko Takuda

Author(s):  
Yasushi Tatebayashi ◽  
Kazuhiro Tanaka ◽  
Toshio Kobayashi

The authors have been investigating the various characteristics of screw-type centrifugal pumps, such as pressure fluctuations in impellers, flow patterns in volute casings, and pump performance in air-water two-phase flow conditions. During these investigations, numerical results of our investigations made it clear that three back flow regions existed in this type of pump. Among these, the back flow from the volute casing toward the impeller outlet was the most influential on the pump performance. Thus the most important factor to achieve higher pump performance was to reduce the influence of this back flow. One simple method was proposed to obtain the restraint of back flow and so as to improve the pump performance. This method was to set up a Ring-like wall at the suction cover casing between the impeller outlet and the volute casing. Its effects on the flow pattern and the pump performance have been discussed and clarified to compare the calculated results with experimental results done under two conditions — namely, one with and one without this Ring-type wall. The influence of wall’s height on the pump head was investigated by numerical simulations. In addition, the difference due to the wall’s effect was clarified to compare its effects on two kinds of volute casing. From the results obtained it can be said that restraining the back flow of such pumps was very important to achieve higher pump performance. Furthermore, another method was suggested to restrain back-flow effectively. This method was to attach a wall at the trailing edge of impeller. This method was very useful for avoiding the congestion of solids because this wall was smaller than that used in the first method. The influence of these factors on the pump performance was also discussed by comparing simulated calculations with actual experiments.


Sign in / Sign up

Export Citation Format

Share Document