MHD heat and mass transfer flow of a nanofluid over an inclined vertical porous plate with radiation and heat generation/absorption

2017 ◽  
Vol 28 (3) ◽  
pp. 1008-1017 ◽  
Author(s):  
P. Sudarsana Reddy ◽  
Ali J. Chamkha ◽  
Ali Al-Mudhaf
Author(s):  
J. Buggaramulu ◽  
M. Venkatakrishna ◽  
Y. Harikrishna

The objective of this paper is to analyze an unsteady MHD free convective heat and mass transfer boundary flow past a semi-infinite vertical porous plate immersed in a porous medium with radiation and chemical reaction. The governing equations of the flow field are solved numerical a two term perturbation method. The effects of the various parameters on the velocity, temperature and concentration profiles are presented graphically and values of skin-frication coefficient, Nusselt number and Sherwood number for various values of physical parameters are presented through tables.


2006 ◽  
Vol 11 (4) ◽  
pp. 331-343 ◽  
Author(s):  
M. S. Alam ◽  
M. M. Rahman ◽  
M. A. Samad

The problem of combined free-forced convection and mass transfer flow over a vertical porous flat plate, in presence of heat generation and thermaldiffusion, is studied numerically. The non-linear partial differential equations and their boundary conditions, describing the problem under consideration, are transformed into a system of ordinary differential equations by using usual similarity transformations. This system is solved numerically by applying Nachtsheim-Swigert shooting iteration technique together with Runge-Kutta sixth order integration scheme. The effects of suction parameter, heat generation parameter and Soret number are examined on the flow field of a hydrogen-air mixture as a non-chemical reacting fluid pair. The analysis of the obtained results showed that the flow field is significantly influenced by these parameters.


2008 ◽  
Vol 75 (1) ◽  
Author(s):  
C. J. Toki

An exact solution of the problem of the unsteady free convection and mass transfer flow near an infinite vertical porous plate, which moves with time-dependent velocity in a viscous and incompressible fluid, is presented here by the Laplace transform technique. All expressions of the new solutions of the present problem were obtained in closed forms with arbitrary Prandtl number (Pr), Schmidt number (Sc), thermal Grashof number (Gr), and mass Grashof number (Gm). Two applications of physical interest for porous or nonporous plate are discussed. Applying numerical values into the expressions of analytical solution, we was also discussed the vertical air flows—the usual phenomenon at plumes into the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document