Continuous shear thickening and discontinuous shear thickening of concentrated monodispersed silica slurry

2020 ◽  
Vol 31 (4) ◽  
pp. 1659-1664 ◽  
Author(s):  
Hiroshi Nakamura ◽  
Soichiro Makino ◽  
Masahiko Ishii
2015 ◽  
Vol 115 (22) ◽  
Author(s):  
Neil Y. C. Lin ◽  
Ben M. Guy ◽  
Michiel Hermes ◽  
Chris Ness ◽  
Jin Sun ◽  
...  

2015 ◽  
Vol 106 (15) ◽  
pp. 151902 ◽  
Author(s):  
Weifeng Jiang ◽  
Shouhu Xuan ◽  
Xinglong Gong

1996 ◽  
Vol 77 (22) ◽  
pp. 4660-4663 ◽  
Author(s):  
J. R. Melrose ◽  
J. H. van Vliet ◽  
R. C. Ball

2017 ◽  
Vol 114 (33) ◽  
pp. 8740-8745 ◽  
Author(s):  
Vikram Rathee ◽  
Daniel L. Blair ◽  
Jeffrey S. Urbach

Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Joachim Kaldasch ◽  
Bernhard Senge ◽  
Jozua Laven

A model of shear thickening in dense suspensions of Brownian soft sphere colloidal particles is established. It suggests that shear thickening in soft sphere suspensions can be interpreted as a shear induced phase transition. Based on a Landau model of the coagulation transition of stabilized colloidal particles, taking the coupling between order parameter fluctuations and the local strain-field into account, the model suggests the occurrence of clusters of coagulated particles (subcritical bubbles) by applying a continuous shear perturbation. The critical shear stress of shear thickening in soft sphere suspensions is derived while reversible shear thickening and irreversible shear thickening have the same origin. The comparison of the theory with an experimental investigation of electrically stabilized colloidal suspensions confirms the presented approach.


Author(s):  
Yifeng Hong ◽  
Donggang Yao

By synergistically combining distinct physical and chemical properties of different components, co-continuous polymer blending has become an important route to improve the performance of polymeric materials. Shear thickening fluid is a type of non-Newtonian fluid which has unique shear rate dependence and good damping properties. In this work, the authors combined the shear thickening fluid and a commodity polymer into a single system by forming a co-continuous blend via a melt processing technique. The processing window of such co-continuous blend was determined by referring to the thermal and rheological properties of raw materials and experimentally exploring various blending conditions. An increase of tanδ under dynamic mechanical analyzing testing was observed in the co-continuous blend compared with neat polymer as control, which indicated the enhancement of damping capabilities.


2019 ◽  
Vol 116 (42) ◽  
pp. 20828-20836 ◽  
Author(s):  
Aaron S. Baumgarten ◽  
Ken Kamrin

Fine-particle suspensions (such as cornstarch mixed with water) exhibit dramatic changes in viscosity when sheared, producing fascinating behaviors that captivate children and rheologists alike. Examination of these mixtures in simple flow geometries suggests intergranular repulsion and its influence on the frictional nature of granular contacts is central to this effect—for mixtures at rest or shearing slowly, repulsion prevents frictional contacts from forming between particles, whereas when sheared more forcefully, granular stresses overcome the repulsion allowing particles to interact frictionally and form microscopic structures that resist flow. Previous constitutive studies of these mixtures have focused on particular cases, typically limited to 2D, steady, simple shearing flows. In this work, we introduce a predictive and general, 3D continuum model for this material, using mixture theory to couple the fluid and particle phases. Playing a central role in the model, we introduce a microstructural state variable, whose evolution is deduced from small-scale physical arguments and checked with existing data. Our space- and time-dependent model is implemented numerically in a variety of unsteady, nonuniform flow configurations where it is shown to accurately capture a variety of key behaviors: 1) the continuous shear-thickening (CST) and discontinuous shear-thickening (DST) behavior observed in steady flows, 2) the time-dependent propagation of “shear jamming fronts,” 3) the time-dependent propagation of “impact-activated jamming fronts,” and 4) the non-Newtonian, “running on oobleck” effect, wherein fast locomotors stay afloat while slow ones sink.


2020 ◽  
Author(s):  
M Wee ◽  
M Mastrangelo ◽  
Susan Carnachan ◽  
Ian Sims ◽  
K Goh

A shear-thickening water-soluble polysaccharide was purified from mucilage extracted from the fronds of the New Zealand black tree fern (Cyathea medullaris or 'mamaku' in Māori) and its structure characterised. Constituent sugar analysis by three complementary methods, combined with linkage analysis (of carboxyl reduced samples) and 1H and 13C nuclear magnetic resonance spectroscopy (NMR) revealed a glucuronomannan comprising a backbone of 4-linked methylesterified glucopyranosyl uronic acid and 2-linked mannopyranosyl residues, branched at O-3 of 45% and at both O-3 and O-4 of 53% of the mannopyranosyl residues with side chains likely comprising terminal xylopyranosyl, terminal galactopyranosyl, non-methylesterified terminal glucopyranosyl uronic acid and 3-linked glucopyranosyl uronic acid residues. The weight-average molecular weight of the purified polysaccharide was ~1.9×106Da as determined by size-exclusion chromatography coupled with multi-angle laser light scattering (SEC-MALLS). The distinctive rheological properties of this polysaccharide are discussed in relation to its structure. © 2014 Elsevier B.V.


Sign in / Sign up

Export Citation Format

Share Document