Response of common carp fry fed diets containing a pea seed meal (Pisum sativum) subjected to different thermal processing methods

Aquaculture ◽  
2010 ◽  
Vol 305 (1-4) ◽  
pp. 117-123 ◽  
Author(s):  
S.J. Davies ◽  
A. Gouveia
Author(s):  
Vanessa Vernoud ◽  
Ludivine Lebeigle ◽  
Jocelyn Munier ◽  
Julie Marais ◽  
Myriam Sanchez ◽  
...  

Abstract The use of pulses as ingredients for the production of food products rich in plant proteins is increasing. However, protein fractions prepared from pea or other pulses contain significant amounts of saponins, glycosylated triterpenes which can impart an undesirable bitter taste when used as an ingredient in foodstuffs. In this paper, we describe the identification and characterization of a gene involved in saponin biosynthesis during pea seed development, by screening mutants obtained from two Pisum sativum TILLING (Targeting Induced Local Lesions in Genomes) populations in two different genetic backgrounds. The mutations studied are located in a gene designated PsBAS1 (β-amyrin synthase1) which is highly expressed in maturing pea seeds and which encodes a protein previously shown to correspond to an active β-amyrin synthase. The first allele is a nonsense mutation, while the second mutation is located in a splice site and gives rise to a mis-spliced transcript encoding a truncated, non-functional protein. The homozygous mutant seeds accumulated virtually no saponin without affecting seed nutritional or physiological quality. Interestingly, BAS1 appears to control saponin accumulation in all other tissues of the plant examined. These lines represent a first step in the development of pea varieties lacking bitterness off-flavours in their seeds. Our work also shows that TILLING populations in different genetic backgrounds represent valuable genetic resources for both crop improvement and functional genomics.


animal ◽  
2008 ◽  
Vol 2 (3) ◽  
pp. 366-374 ◽  
Author(s):  
A. Mekbungwan ◽  
K. Yamauchi ◽  
T. Sakaida ◽  
T. Buwjoom
Keyword(s):  

2012 ◽  
Vol 2 (4) ◽  
pp. 136-140
Author(s):  
P. Hema Prabha ◽  
U. Kavya Vaishnavi ◽  
R. Mythili ◽  
M. Lakshmi Kamu ◽  
R. Kanagalakshmi ◽  
...  

Ohmic heating is an emerging technology with large number of actual and future applications. It is an advanced thermal processing method wherein the food material, which serves as an electrical resistor, is heated by passing electricity through it. Like thermal processing, ohmic heating inactivates microorganisms by heat. It can be used for heating liquid foods containing large particulates, heat sensitive liquids and proteinaceous foods. The shelf life of ohmically processed foods is comparable to that of canned and sterile, aseptically processed products. Being an eco‐friendly method it is more effective than conventional thermal processing methods.


2011 ◽  
Vol 50 (No. 11) ◽  
pp. 519-527 ◽  
Author(s):  
R. Dvořák ◽  
A. Pechová ◽  
L. Pavlata ◽  
J. Filípek ◽  
J. Dostálová ◽  
...  

The goal of the trial was to reduce the content of antinutritional substances in pea (Pisum sativum L.) seeds in order to enhance its use in livestock nutrition. A variety of field pea (Pisum sativum L.) with a high content of antinutritional substances and favourable production traits (Gotik) was chosen. Native and heat-treated pea seeds were used to collect representative samples (n = 6) for analytical purposes. The technology (V-0 technology, Czech patent No. 285745) was further modified by adjusting the reactor temperature, the duration of exposure to that temperature, and the duration of ageing of the material treated in this way (V-I and V-II technologies). The methodology of treatment is based on exposing pea seeds to vapour, organic acids and selected oxides.The monitored parameters included antinutritional substances. As far as the antinutritional substances were concerned, the content of trypsin inhibitors in native pea seeds (P) was around 15.4 ± 0.5 TIU. After treatment with technologies V-0, V-I, and V-II its activity dropped by 83.8, 80.5 and 83.8%, respectively. The pre-treatment titre of lectins (P) was 717 ± 376. It dropped by 70.3, 35.7 and 73.2% after treatment with technologies V-0, V-I and V-II, respectively. The content of tannins measured by the amount of gallic acid in native pea seeds was 49.1 ± 2.7 mg per kg. It dropped by 41.4, 32.0 and 46.2% after the application of the above-mentioned technologies. The content of indigestible oligosaccharides causing flatulence was less affected by the treatments. The pre-treatment content of raffinose was 9.5 ± 0.5 g/kg. The drop associated with the treatment was 9.5, 6.3 and 10.5%, respectively. The pre-treatment content of stachyose was 21.4 ± 0.8 g/kg and after treatment with technologies V-0 and V-II it dropped by 7.0% and by 16.4%, respectively. The application of technology V-I did not result in a drop in the content of stachyose. The content of verbascose in native pea seeds was 16.1 g/kgand the treatment with technologies V-0; V-I and V-II resulted in a drop by 7.5, 5.6 and 20.5%, respectively. As for the detected phenolic acids, with the exception of caffeic acid, not a drop, but an increase in their content was recorded. Isoflavone oestrogens such as daidzein and genistein also recorded a small increase in their content. The results of the trial lead us to conclude that the above-described methods of pea seed treatment, especially the V-II variant, proved to be useful and can be recommended for practical use.  


Sign in / Sign up

Export Citation Format

Share Document