Use of continuous infusion of clonidine for sedation in critically ill infants and children

Author(s):  
L. Sadozai ◽  
S. Prot-Labarthe ◽  
O. Bourdon ◽  
S. Dauger ◽  
A. Deho
2006 ◽  
Vol 7 (5) ◽  
pp. 502
Author(s):  
Lori D. Fineman ◽  
Michelle LaBrecque ◽  
Mei-Chiung Shih ◽  
Martha A.Q. Curley

2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Susanna Edith Medellín-Garibay ◽  
Silvia Romano-Moreno ◽  
Pilar Tejedor-Prado ◽  
Noelia Rubio-Álvaro ◽  
Aida Rueda-Naharro ◽  
...  

ABSTRACT Pathophysiological changes involved in drug disposition in critically ill patients should be considered in order to optimize the dosing of vancomycin administered by continuous infusion, and certain strategies must be applied to reach therapeutic targets on the first day of treatment. The aim of this study was to develop a population pharmacokinetic model of vancomycin to determine clinical covariates, including mechanical ventilation, that influence the wide variability of this antimicrobial. Plasma vancomycin concentrations from 54 critically ill patients were analyzed simultaneously by a population pharmacokinetic approach. A nomogram for dosing recommendations was developed and was internally evaluated through stochastic simulations. The plasma vancomycin concentration-versus-time data were best described by a one-compartment open model with exponential interindividual variability associated with vancomycin clearance and the volume of distribution. Residual error followed a homoscedastic trend. Creatinine clearance and body weight significantly dropped the objective function value, showing their influence on vancomycin clearance and the volume of distribution, respectively. Characterization based on the presence of mechanical ventilation demonstrated a 20% decrease in vancomycin clearance. External validation (n = 18) was performed to evaluate the predictive ability of the model; median bias and precision values were 0.7 mg/liter (95% confidence interval [CI], −0.4, 1.7) and 5.9 mg/liter (95% CI, 5.4, 6.4), respectively. A population pharmacokinetic model was developed for the administration of vancomycin by continuous infusion to critically ill patients, demonstrating the influence of creatinine clearance and mechanical ventilation on vancomycin clearance, as well as the implications for targeting dosing rates to reach the therapeutic range (20 to 30 mg/liter).


2014 ◽  
Vol 70 (3) ◽  
pp. 891-898 ◽  
Author(s):  
P.-F. Laterre ◽  
X. Wittebole ◽  
S. Van de Velde ◽  
A. E. Muller ◽  
J. W. Mouton ◽  
...  

1996 ◽  
Vol 40 (3) ◽  
pp. 691-695 ◽  
Author(s):  
A S Benko ◽  
D M Cappelletty ◽  
J A Kruse ◽  
M J Rybak

The pharmacodynamics and pharmacokinetics of ceftazidime administered by continuous infusion and intermittent bolus over a 4-day period were compared. We conducted a prospective, randomized, crossover study of 12 critically ill patients with suspected gram-negative infections. The patients were randomized to receive ceftazidime either as a 2-g intravenous (i.v.) loading dose followed by a 3-g continuous infusion (CI) over 24 h or as 2 g i.v. every 8 h (q8h), each for 2 days. After 2 days, the patients were crossed over and received the opposite regimen. Each regimen also included tobramycin (4 to 7 mg/kg of body weight, given i.v. q24h). Eighteen blood samples were drawn on study days 2 and 4 to evaluate the pharmacokinetics of ceftazidime and its pharmacodynamics against a clinical isolate of Pseudomonas aeruginosa (R288). The patient demographics (means +/- standard deviations) were as follows: age, 57 +/- 12 years; sex, nine males and three females; APACHE II score, 15 +/- 3; diagnosis, 9 of 12 patients with pneumonia. The mean pharmacokinetic parameters for ceftazidime given as an intermittent bolus (IB) (means +/- standard deviations) were as follows: maximum concentration of drug in serum, 124.4 +/- 52.6 micrograms/ml; minimum concentration in serum, 25.0 +/- 17.5 micrograms/ml; elimination constant, 0.268 +/- 0.205 h-1; half-life, 3.48 +/- 1.61 h; and volume of distribution, 18.9 +/- 9.0 liters. The steady-state ceftazidime concentration for CI was 29.7 +/- 17.4 micrograms/ml, which was not significantly different from the targeted concentrations. The range of mean steady-state ceftazidime concentrations for the 12 patients was 10.6 to 62.4 micrograms/ml. Tobramycin peak concentrations ranged between 7 and 20 micrograms/ml. As expected, the area under the curve for the 2-g q8h regimen was larger than that for CI (P = 0.003). For IB and CI, the times that the serum drug concentration was greater than the MIC were 92 and 100%, respectively, for each regimen against the P. aeruginosa clinical isolate. The 24-h bactericidal titers in serum, at which the tobramycin concentrations were < 1.0 microgram/ml in all patients, were the same for CI and IB (1:4). In the presence of tobramycin, the area under the bactericidal titer-time curve (AUBC) was significantly greater for IB than CI (P = 0.001). After tobramycin was removed from the serum, no significant difference existed between the AUBCs for CI and IB. We conclude that CI of ceftazidime utilizing one-half the IB daily dose was equivalent to the IB treatment as judged by pharmacodynamic analysis of critically ill patients with suspected gram-negative infections. No evaluation comparing the clinical efficacies of these two dosage regimens was performed.


2009 ◽  
Vol 53 (5) ◽  
pp. 1863-1867 ◽  
Author(s):  
Federico Pea ◽  
Mario Furlanut ◽  
Camilla Negri ◽  
Federica Pavan ◽  
Massimo Crapis ◽  
...  

ABSTRACT The efficacy of vancomycin against methicillin-resistant Staphylococcus aureus (MRSA)-related infections has been called into question by recent findings of higher rates of failure of vancomycin treatment of infections caused by strains with high MICs. Continuous infusion may be the best way to maximize the time-dependent activity of vancomycin. The aim of this study was to create dosing nomograms in relation to different creatinine clearance (CLCr) estimates for use in daily clinical practice to target the steady-state concentrations (C sss) of vancomycin during continuous infusion at 15 to 20 mg/liter (after the administration of an initial loading dose of 15 mg/kg of body weight over 2 h). The correlation between vancomycin clearance (CLv) and CLCr was retrospectively assessed in a cohort of critically ill patients (group 1, n = 70) to create a formula for dosage calculation to target C ss at 15 mg/liter. The performance of this formula was prospectively validated in a similar cohort (group 2, n = 63) by comparison of the observed and the predicted C sss. A significant relationship between CLv and CLCr was observed in group 1 (P < 0.001). The application of the calculated formula to vancomycin dosing in group 2 {infusion rate (g/24 h) = [0.029 × CLCr (ml/min) + 0.94] × target Css × (24/1,000)} led to a significant correlation between the observed and the predicted C sss (r = 0.80, P < 0.001). Two dosing nomograms based on CLCr were created to target the vancomycin C ss at 15 and 20 mg/liter in critically ill patients. These nomograms could be helpful in improving the vancomycin treatment of MRSA infections, especially in the presence of borderline-susceptible pathogens and/or of pathophysiological conditions which may enhance the clearance of vancomycin, while potentially avoiding the increased risk of nephrotoxicity observed with the use of high intermittent doses of vancomycin.


2020 ◽  
Vol 64 (7) ◽  
Author(s):  
Vibeke Klastrup ◽  
Anders Thorsted ◽  
Merete Storgaard ◽  
Steffen Christensen ◽  
Lena E. Friberg ◽  
...  

ABSTRACT Pharmacokinetic changes are often seen in patients with severe infections. Administration by continuous infusion has been suggested to optimize antibiotic exposure and pharmacokinetic/pharmacodynamic (PK/PD) target attainment for β-lactams. In an observational study, unbound piperacillin concentrations (n = 196) were assessed in 78 critically ill patients following continuous infusion of piperacillin-tazobactam (ratio 8:1). The initial dose of 8, 12, or 16 g (piperacillin component) was determined by individual creatinine clearance (CRCL). Piperacillin concentrations were compared to the EUCAST clinical breakpoint MIC for Pseudomonas aeruginosa (16 mg/liter), and the following PK/PD targets were evaluated: 100% free time (fT) > 1× MIC and 100% fT > 4× MIC. A population pharmacokinetic model was developed using NONMEM 7.4.3 consisting of a one-compartment disposition model with linear elimination separated into nonrenal and renal (linearly increasing with patient CRCL) clearances. Target attainment was predicted and visualized for all individuals based on the utilized CRCL dosing algorithm. The target of 100% fT > 1× MIC was achieved for all patients based on the administered dose, but few patients achieved the target of 100% fT > 4× MIC. Probability of target attainment for a simulated cohort of patients showed that increasing the daily dose by 4-g increments (piperacillin component) did not result in substantially improved target attainment for the 100% fT > 4× MIC target. To conclude, in patients with high CRCL combined with high-MIC bacterial infections, even a continuous infusion (CI) regimen with a daily dose of 24 g may be insufficient to achieve therapeutic concentrations.


Sign in / Sign up

Export Citation Format

Share Document