scholarly journals Heat transfer analysis for fluid flow over an exponentially stretching porous sheet with surface heat flux in porous medium

2013 ◽  
Vol 4 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Iswar Chandra Mandal ◽  
Swati Mukhopadhyay
Author(s):  
Wei Liu ◽  
Kazuyuki Takase

In this paper, a measurement system for surface temperature and surface heat flux was developed to study heat transfer mechanism in boiling process. The system was consisted by two parts: (1) inner block temperatures were measured using micro-thermocouples set at two layers inside heating block; (2) with using the measured temperatures, inverse heat transfer analysis was performed to get surface heat flux and surface temperature. For the inner block temperature measurement, special T-type micro thermocouples with a common positive pole were developed. Totally 20 thermocouples were set at two layers at the depths 3.1μm and 4.905mm beneath the boiling surface, in a radius of 5mm. The developed system was used to research the change of surface heat flux and surface temperature in a boiling process. Experiments were performed to pool boiling at atmospheric pressure. The experiments showed the developed special T-type micro thermocouples could trace temperature change in boiling process successfully. With comparison to images from a high-speed camera, temperature change tendencies in boiling process were tried to understand. Then one dimensional inverse heat conduction problem was solved to get surface heat flux and surface temperature. Increase in surface heat flux with the generation of big bubble was derived successfully.


Author(s):  
Ashutosh Kumar Yadav ◽  
Parantak Sharma ◽  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Vishal Nirgude ◽  
...  

Impinging jet cooling technique has been widely used extensively in various industrial processes, namely, cooling and drying of films and papers, processing of metals and glasses, cooling of gas turbine blades and most recently cooling of various components of electronic devices. Due to high heat removal rate the jet impingement cooling of the hot surfaces is being used in nuclear industries. During the loss of coolant accidents (LOCA) in nuclear power plant, an emergency core cooling system (ECCS) cool the cluster of clad tubes using consisting of fuel rods. Controlled cooling, as an important procedure of thermal-mechanical control processing technology, is helpful to improve the microstructure and mechanical properties of steel. In industries for heat transfer efficiency and homogeneous cooling performance which usually requires a jet impingement with improved heat transfer capacity and controllability. It provides better cooling in comparison to air. Rapid quenching by water jet, sometimes, may lead to formation of cracks and poor ductility to the quenched surface. Spray and mist jet impingement offers an alternative method to uncontrolled rapid cooling, particularly in steel and electronics industries. Mist jet impingement cooling of downward facing hot surface has not been extensively studied in the literature. The present experimental study analyzes the heat transfer characteristics a 0.15mm thick hot horizontal stainless steel (SS-304) foil using Internal mixing full cone (spray angle 20 deg) mist nozzle from the bottom side. Experiments have been performed for the varied range of water pressure (0.7–4.0 bar) and air pressure (0.4–5.8 bar). The effect of water and air inlet pressures, on the surface heat flux has been examined in this study. The maximum surface heat flux is achieved at stagnation point and is not affected by the change in nozzle to plate distance, Air and Water flow rates.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1612
Author(s):  
Iskandar Waini ◽  
Anuar Ishak ◽  
Ioan Pop

This study investigates the nanofluid flow towards a shrinking cylinder consisting of Al2O3 nanoparticles. Here, the flow is subjected to prescribed surface heat flux. The similarity variables are employed to gain the similarity equations. These equations are solved via the bvp4c solver. From the findings, a unique solution is found for the shrinking strength λ≥−1. Meanwhile, the dual solutions are observed when λc<λ<−1. Furthermore, the friction factor Rex1/2Cf and the heat transfer rate Rex−1/2Nux increase with the rise of Al2O3 nanoparticles φ and the curvature parameter γ. Quantitatively, the rates of heat transfer Rex−1/2Nux increase up to 3.87% when φ increases from 0 to 0.04, and 6.69% when γ increases from 0.05 to 0.2. Besides, the profiles of the temperature θ(η) and the velocity f’(η) on the first solution incline for larger γ, but their second solutions decline. Moreover, it is noticed that the streamlines are separated into two regions. Finally, it is found that the first solution is stable over time.


1999 ◽  
Author(s):  
Wayne N. O. Turnbull ◽  
Patrick H. Oosthuizen

Abstract A new experimental technique has been developed that permits the determination of local surface heat transfer coefficients on surfaces without requirement for calibration of the temperature-sensing device. The technique uses the phase delay that develops between the surface temperature response and an imposed periodic surface heat flux. This phase delay is dependent upon the thermophysical properties of the model, the heat flux driving frequency and the local heat transfer coefficient. It is not a function of magnitude of the local heat flux. Since only phase differences are being measured there is no requirement to calibrate the temperature sensor, in this instance a thermochromic liquid crystal. Application of a periodic surface heat flux to a flat plate resulted in a surface colour response that was a function of time. This response was captured using a standard colour CCD camera and the phase delay angles were determined using Fourier analysis. Only the 8 bit G component of the captured RGB signal was required, there being no need to determine a Hue value. From these experimentally obtained phase delay angles it was possible to determine heat transfer coefficients that compared well with those predicted using a standard correlation.


Sign in / Sign up

Export Citation Format

Share Document