scholarly journals Numerical investigation for mixed convective 3D radiative flow of chemically reactive Williamson nanofluid with power law heat/mass fluxes

Author(s):  
Iftikhar Ahmad ◽  
Muhammad Faisal ◽  
Tariq Javed ◽  
Ayesha Mustafa ◽  
Muhammad Zaheer Kiyani
2021 ◽  
Author(s):  
Hasib Ahmed Prince ◽  
Didarul Ahasan Redwan ◽  
Enamul Hasan Rozin ◽  
Sudipta Saha ◽  
Mohammad Arif Hasan Mamun

Abstract In this study, a numerical investigation on mixed convection inside a trapezoidal cavity with a pair of rotating cylinders has been conducted. Three different power-law fluid indexes (n = 1.4, 1.0, and 0.6) have been considered to model different sets of non-Newtonian fluids. Four separate cases are considered dependent on the rotation orientation of the cylinders within the cavity. In the first two cases, the cylinders rotate in the same direction, i.e., both counter-clockwise (CCW), and both clockwise (CW), whereas, in the other two cases, cylinders rotate in opposite directions (CW-CCW and CCW-CW). Simulations have been carried out over a broad range of Reynolds number (from 0.5 to 500) and angular speeds (a dimensionless value from 0 to 10). The average Nusselt number values at the isothermal hot inclined cavity surface are determined to evaluate heat transfer performance in various circumstances. Streamlines and isotherm contours are also plotted for better understandings of the effects of different cases for various parameters on thermal and fluid flow fields. It is found that the Nusselt number varies non-linearly with different angular speeds of the cylinders. The combined effect of the mixing induced by cylinder rotation and viscosity characteristics of the fluid dictates the heat transfer in the system. Predictions from the numerical investigation provide insights onto the sets of key parametric configuration that have dominant influence on the thermal performance of lid driven cavity with double rotating cylinders.


2020 ◽  
Vol 280 ◽  
pp. 104280 ◽  
Author(s):  
Jan Domurath ◽  
Gilles Ausias ◽  
Julien Férec ◽  
Marina Saphiannikova

2013 ◽  
Vol 59 (214) ◽  
pp. 269-274 ◽  
Author(s):  
Alec Van Herwijnen ◽  
Daniel A. Miller

AbstractSintering rates in snow were investigated by measuring changes in penetration resistance with time and by using a numerical snow metamorphism model. Periodic Snow Micro Penetrometer (SMP) measurements were performed on uniform snow samples covering a wide range of densities. The mean penetration resistance of snow increased with time according to a power law with an average exponent of 0.18. Simulated changes in the bond-to-grain ratio for simplified spherical ice grains followed a power law with an average exponent of 0.18, showing that the mean penetration resistance, as measured with the SMP, closely relates to bond-to-grain ratio in snow. For lower-density snow samples, consisting mostly of dendritic snow morphologies, the measured increase in penetration resistance was lower. This is likely the result of two competing processes: (1) strengthening of the snow sample due to the creation and growth of bonds and (2) weakening of the snow sample due to the formation of unbonded small rounded particles at the expense of larger dendritic forms. On the other hand, the rate of increase in penetration resistance for snow samples consisting of closely packed depth hoar was similar to that of rounded grains.


Sign in / Sign up

Export Citation Format

Share Document