Chaos-based Vortex Search algorithm for solving inverse kinematics problem of serial robot manipulators with offset wrist

2020 ◽  
Vol 89 ◽  
pp. 106074 ◽  
Author(s):  
Metin Toz
2013 ◽  
Vol 5 (3) ◽  
Author(s):  
Zhongtao Fu ◽  
Wenyu Yang ◽  
Zhen Yang

In this paper, we present an efficient method based on geometric algebra for computing the solutions to the inverse kinematics problem (IKP) of the 6R robot manipulators with offset wrist. Due to the fact that there exist some difficulties to solve the inverse kinematics problem when the kinematics equations are complex, highly nonlinear, coupled and multiple solutions in terms of these robot manipulators stated mathematically, we apply the theory of Geometric Algebra to the kinematic modeling of 6R robot manipulators simply and generate closed-form kinematics equations, reformulate the problem as a generalized eigenvalue problem with symbolic elimination technique, and then yield 16 solutions. Finally, a spray painting robot, which conforms to the type of robot manipulators, is used as an example of implementation for the effectiveness and real-time of this method. The experimental results show that this method has a large advantage over the classical methods on geometric intuition, computation and real-time, and can be directly extended to all serial robot manipulators and completely automatized, which provides a new tool on the analysis and application of general robot manipulators.


Author(s):  
Zhi Xin Shi ◽  
Yu Feng Luo ◽  
Lu Bing Hang ◽  
Ting Li Yang

Because the solution to inverse kinematics problem of the general 5R serial robot is unique and its assembly condition has been derived, a simple effective method for inverse kinematics problem of general 6R serial robot or forward kinematics problem of general 7R single-loop mechanism is presented based on one-dimension searching algorithm. The new method has the following features: (1) Using one-dimension searching algorithm, all the real inverse kinematic solutions are obtained and it has higher computing efficiency; (2) Compared with algebraic method, it has evidently reduced the difficulty of deducing formulas. The principle of the new method can be generalized to kinematic analysis of parallel mechanisms.


2006 ◽  
Vol 129 (8) ◽  
pp. 793-798 ◽  
Author(s):  
Shi Zhi Xin ◽  
Luo Yu Feng ◽  
Hang Lu Bing ◽  
Yang Ting Li

The inverse kinematic analysis of the general 6R serial robot has been a very significant and important problem in the theory of the spatial mechanisms. Because the solution to inverse kinematics problem of the general 5R serial robot is unique and its assembly condition has been derived, a simple effective method for inverse kinematics problem of general 6R serial robot or forward kinematics problem of general 7R single-loop mechanism is presented based on a one-dimension searching algorithm. All the real solutions to inverse kinematics problems of the general 6R serial robot or forward kinematics problems of the general 7R single-loop mechanism can be obtained. The new method has the following features: (1) using one-dimension searching algorithm, all the real inverse kinematic solutions are obtained and it has higher computing efficiency; and (2) compared with the algebraic method, it has evidently reduced the difficulty of deducing formulas. The principle of the new method can be generalized to kinematic analysis of parallel mechanisms.


2011 ◽  
Vol 217-218 ◽  
pp. 233-237
Author(s):  
Xi Guang Huang

The inverse kinematics of serial robots is a central problem in the automatic control of robot manipulators. The aim of this paper is to obtain a computational algorithm to compute the inverse kinematics problem of a spatial serial robot. We use a series of algebraic and numeric transformations to reduce the problem to a univariate polynomial equation. The results can be directly applied to symbolic calculations and decreased considerably the calculation time.


1985 ◽  
Vol 107 (2) ◽  
pp. 201-208 ◽  
Author(s):  
G. R. Pennock ◽  
A. T. Yang

This paper presents the application of dual-number matrices to the formulation of displacement equations of robot manipulators with completely general geometry. Dual-number matrices make possible a concise representation of link proportions and joint parameters; together with the orthogonality properties of the matrices we are able to derive, in a systematic manner, closed-form solutions for the joint displacements of robot manipulators with special geometry as illustrated by three examples. It is hoped that the method presented here will provide a meaningful alternative to existing methods for formulating the inverse kinematics problem of robot manipulators.


Author(s):  
Massimo Antonini ◽  
Alberto Borboni ◽  
Roberto Bussola ◽  
Rodolfo Faglia

The paper illustrates the application of a genetic algorithm as a methodology to choose and improve the motion law governing the movement of a redundant robot. The subject of this research is an innovative system developed to introduce the laser ray technology in the on-line tube cutting. This technique allows a quality improvement in the pipe-cutting sector, thanks to the various goals. Firstly we underline the improvement of the working environment due to the elimination of cutting noise taking off the tool changing and the steel shaving creation. Secondarily there is a drastic reduction of the cutting cycle time and an improvement of the productivity accomplished by the use of brushless drives and linear motors. In the robot design, particular attention was dedicated to the masses distributions allowing a good natural machine dynamics. The ability of the robot to avoid the cutting object, the demand to maintain the laser torch orthogonal to the cutting surfaces, as well the necessity to impose a velocity behaviour as constant as possible during the cutting operation, suggested the introduction of a redundant degree of freedom. This aspect gives a lot of opportunities in the choose of movements because there are thousands motion profiles for the joints whichever satisfying the conditions imposed to the end-effector path. In this context, we have proposed the idea to combine the procedure to solve the inverse kinematics problem with the contemporaneous optimization of the trajectory. Literature offers a series of algorithms to solve well-known inverse kinematics problem of redundant robot. These are based on the inversion of the matrix representing the link between the end-effector co-ordinates and the joints. The presence of redundancy makes this matrix rectangular and requires the use of the pseudo-inverse matrix to solve the problem in several points of the trajectory. The introduction of some weights, one for each joint co-ordinate, allows to obtain a different distribution of the joint movements computing the pseudo-inverse matrix. If we change these weights in a continuous way in time domain, we can supervise the dynamic behaviors of the machine. The new idea we propose here is the use of an adapted multi-objective genetic algorithm to define a several of particular motion laws reducing vibrations and realizing “special harmonies” in the robot motion. The procedure, that will be completely discussed in the full paper, is actually working on a laser pipe cutting machine. This robot awarded the first prize between two thousand competitor at the EMO MILANO 2003 exhibition.


2021 ◽  
pp. 1-13
Author(s):  
Louis-Thomas Schreiber ◽  
Clement Gosselin

Abstract This paper introduces a classification of the inverse kinematics solutions (or robot postures) of six-degree-of-freedom serial robots with a geometry based on or similar to Universal Robots' arms. The solution of the inverse kinematics problem is first presented briefly and the equations required to classify the robot postures(branches) based on the joint coordinates are then introduced.


Sign in / Sign up

Export Citation Format

Share Document