A numerical model characterizing internal gravity wave propagation into the upper atmosphere

2009 ◽  
Vol 44 (7) ◽  
pp. 836-846 ◽  
Author(s):  
Yonghui Yu ◽  
Michael P. Hickey ◽  
Yinfeng Liu
2012 ◽  
Vol 18 (4(77)) ◽  
pp. 30-36 ◽  
Author(s):  
Y.I. Kryuchkov ◽  
◽  
O.K. Cheremnykh ◽  
A.K. Fedorenko ◽  
◽  
...  

2014 ◽  
Vol 32 (4) ◽  
pp. 443-447 ◽  
Author(s):  
Y. Deng ◽  
A. J. Ridley

Abstract. The high-frequency and small horizontal scale gravity waves may be reflected and ducted in non-hydrostatic simulations, but usually propagate vertically in hydrostatic models. To examine gravity wave propagation, a preliminary study has been conducted with a global ionosphere–thermosphere model (GITM), which is a non-hydrostatic general circulation model for the upper atmosphere. GITM has been run regionally with a horizontal resolution of 0.2° long × 0.2° lat to resolve the gravity wave with wavelength of 250 km. A cosine wave oscillation with amplitude of 30 m s−1 has been applied to the zonal wind at the low boundary, and both high-frequency and low-frequency waves have been tested. In the high-frequency case, the gravity wave stays below 200 km, which indicates that the wave is reflected or ducted in propagation. The results are consistent with the theoretical analysis from the dispersion relationship when the wavelength is larger than the cutoff wavelength for the non-hydrostatic situation. However, the low-frequency wave propagates to the high altitudes during the whole simulation period, and the amplitude increases with height. This study shows that the non-hydrostatic model successfully reproduces the high-frequency gravity wave dissipation.


2017 ◽  
Vol 122 (7) ◽  
pp. 7567-7580 ◽  
Author(s):  
А. V. Medvedev ◽  
K. G. Ratovsky ◽  
M. V. Tolstikov ◽  
A. V. Oinats ◽  
S. S. Alsatkin ◽  
...  

2010 ◽  
Vol 67 (5) ◽  
pp. 1632-1642 ◽  
Author(s):  
J. Marty ◽  
F. Dalaudier

Abstract A three-dimensional linear spectral numerical model is proposed to simulate the propagation of internal gravity wave fluctuations in a stably stratified atmosphere. The model is developed to get first-order estimations of gravity wave fluctuations produced by identified sources. It is based on the solutions of the linearized fundamental fluid equations and uses the fully compressible dispersion relation for inertia–gravity waves. The spectral implementation excludes situations involving spatial variations of buoyancy frequency or background wind. However, density stratification variations are taken into account in the calculation of fluctuation amplitudes. In addition to gravity wave packet free propagation, the model handles both impulsive and continuous sources. It can account for spatial and temporal variations of the sources, encompassing a broad range of physical situations. The method is validated with a monochromatic pressure monopole, which is known to generate St. Andrew’s cross–shaped waves. It is then applied to the case of the ozone layer cooling during a total solar eclipse. The asymptotic response to a Gaussian thermal forcing traveling at constant velocity and the transient response to the 4 December 2002 eclipse show good agreement with previous numerical simulations. Further applications for the model are discussed.


1997 ◽  
Vol 102 (A7) ◽  
pp. 14499-14512 ◽  
Author(s):  
W. L. Oliver ◽  
Y. Otsuka ◽  
M. Sato ◽  
T. Takami ◽  
S. Fukao

Sign in / Sign up

Export Citation Format

Share Document