scholarly journals A study of spatio-temporal variability of equatorial electrojet using long-term ground-Observations

Author(s):  
Alemayehu Mengesha Cherkos ◽  
Melesew Nigussie
2021 ◽  
Vol 185 ◽  
pp. 104336
Author(s):  
Azam Lashkari ◽  
Masoud Irannezhad ◽  
Hossein Zare ◽  
Lev Labzovskii

2016 ◽  
Author(s):  
X. L. Liu ◽  
X. Q. Fu ◽  
Y. Li ◽  
J. L. Shen ◽  
Y. Wang ◽  
...  

Abstract. To explore the intrinsic spatial patterns of N2O emissions in agricultural systems, not only should the spatial and temporal variability in N2O emissions be analyzed separately, but the joint spatio-temporal variability should also be explored by applying spatio-temporal semivariogram models and interpolation methods. In this study, we examined the spatio-temporal variability in N2O emissions from a tea-planted soil from 28 April 2014 to 27 May 2014 using 96 static mini chambers in an approximately regular grid on a 40 m2 tea field (sampling 30 times), and the results were compared with long-term observations of the N2O emissions recorded using large static chambers (sampling 5 times). The N2O fluxes observed by the mini chambers during a 30 min snapshot (10:00–10:30 a.m. China Standard Time) ranged from −2.99 to 487.0 mg N m−2 d−1 and were positively skewed with a median of 13.6 mg N m−2 d−1. The N2O flux data were then log-transformed for normality. After detrending the influences from the chamber placement positions (Position) and the precipitation accumulated over two days (Rain2), the log-transformed N2O fluxes (FLUX30t) exhibited strong spatial, temporal and joint spatio-temporal autocorrelations, which were used as three components of spatio-temporal semivariogram models and were characterized by models based on Stein's parameterized Matérn (Ste) function, exponential function and again the Ste function, respectively. The spatio-temporal experimental semivariogram of the N2O fluxes was fitted using four spatio-temporal semivariogram models (separable, product-sum, metric and sum-metric). The sum-metric model performed the best and provided meaningful effective ranges of spatial and temporal dependence, i.e., 0.41 m and 5.4 days, respectively. Four spatio-temporal regression-kriging interpolations were applied to estimate the spatio-temporal distribution of N2O emissions over the study area. The cross-validation results indicated that the four interpolations exhibited similar performances (r = 0.817–0.824, RMSE = 0.456–0.486, p < 0.001), and outperformed the multiple linear regression prediction (r = 0.735, RMSE = 0.560, p < 0.001). The predictions of the four kriging interpolations for the total N2O emissions from the 40 m2 tea field ranged from 18.3 to 18.5 g N; these values were approximately 25 % higher than the results predicted using the observations of large static chambers. Furthermore, compared with the other three models, the metric model exhibited weak sensitivity for peak prediction, although the cross-validation results indicated that they had same prediction capabilities. Our findings suggested: (i) that the size of large static chambers used for long-term observations of N2O fluxes should be no less than 0.4 m and the time interval for gas sampling should be constrained to approximately 5 days; and (ii) that more efficient testing methods should be adopted to replace the conventional cross-validation methods for evaluating the performance of spatio-temporal kriging.


2018 ◽  
Vol 14 (12) ◽  
pp. 1915-1960 ◽  
Author(s):  
Rudolf Brázdil ◽  
Andrea Kiss ◽  
Jürg Luterbacher ◽  
David J. Nash ◽  
Ladislava Řezníčková

Abstract. The use of documentary evidence to investigate past climatic trends and events has become a recognised approach in recent decades. This contribution presents the state of the art in its application to droughts. The range of documentary evidence is very wide, including general annals, chronicles, memoirs and diaries kept by missionaries, travellers and those specifically interested in the weather; records kept by administrators tasked with keeping accounts and other financial and economic records; legal-administrative evidence; religious sources; letters; songs; newspapers and journals; pictographic evidence; chronograms; epigraphic evidence; early instrumental observations; society commentaries; and compilations and books. These are available from many parts of the world. This variety of documentary information is evaluated with respect to the reconstruction of hydroclimatic conditions (precipitation, drought frequency and drought indices). Documentary-based drought reconstructions are then addressed in terms of long-term spatio-temporal fluctuations, major drought events, relationships with external forcing and large-scale climate drivers, socio-economic impacts and human responses. Documentary-based drought series are also considered from the viewpoint of spatio-temporal variability for certain continents, and their employment together with hydroclimate reconstructions from other proxies (in particular tree rings) is discussed. Finally, conclusions are drawn, and challenges for the future use of documentary evidence in the study of droughts are presented.


2020 ◽  
Vol 287 (1928) ◽  
pp. 20200538
Author(s):  
Warren S. D. Tennant ◽  
Mike J. Tildesley ◽  
Simon E. F. Spencer ◽  
Matt J. Keeling

Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.


Sign in / Sign up

Export Citation Format

Share Document