Numerical simulation and experiments of titanium alloy engine blades based on laser shock processing

2015 ◽  
Vol 40 ◽  
pp. 164-170 ◽  
Author(s):  
Pengyang Li ◽  
Shikun Huang ◽  
Haifeng Xu ◽  
Yuxi Li ◽  
Xiaoli Hou ◽  
...  
2013 ◽  
Vol 456 ◽  
pp. 125-128
Author(s):  
Bing Yan ◽  
Rui Wang

The aim of this article is to analyze the residual stresses field in a TC4 titanium alloy blade by laser shock processing (LSP).LSP is a new surface processing technology, it uses the laser shock wave to act on the surface of the target and form residual compressive stresses field. The ABAQUS software is applied to simulate the LSP of TC4 titanium alloy blade, and the distributions of the residual stresses field are analysed.After single LSP,the maximum value of residual stress on the surface is 309 MPa.The residual stresses on the surface increase first and then decrease.The residual stresses at the depth continue decreasing with the increase of the depth.After multiple LSP,the maximum value of residual stress on the surface is increased and plastically affected depth is increased.


2011 ◽  
Vol 697-698 ◽  
pp. 440-444 ◽  
Author(s):  
Qi Peng Li ◽  
Ying Hong Li ◽  
W. He ◽  
Yu Qin Li ◽  
Xiang Fan Nie ◽  
...  

In this paper, the microstructure and microhardness of laser shock processed (LSP) Ti-6Al-2.5Mo-1.5Cr-0.5Fe-0.3Si titanium alloy with and without annealing were examined and compared. The titanium alloy samples were LSP processed with 3 layers at 4.24GW/cm2. Some of the samples were vacuum annealed at 623K for 10 hours. The microscopic structure with and without annealing were tested and analyzed by SEM, TEM. The results indicated that after LSP, the shock wave provided high strain rate deformation and led to the formation of ultra-fine grain. Comparing with the samples without annealing, the dislocation density was lower and the grain-boundary was more distinct in the annealed samples, but the sizes of the ultra-fine grain didn’t grow bigger after annealing. On the other hand, the microhardness measurement was made on the cross-section. It is obviously that the laser shock processing improved the microhardness of the Ti-6Al-2.5Mo-1.5Cr-0.5Fe-0.3Si for about 12.2% at the surface, and the hardness affected depth is about 500 microns. The microhardness after annealing is 10 HV0.5lower, but the affected depth is not changed. The titanium alloy after LSP is thermostable at 623K; thus break the USA standard AMS2546, in which titanium parts after LSP are subjected in subsequent processing should not exceed 589K.


Author(s):  
Yongxiang Hu ◽  
Zhi Li ◽  
Kangmei Li ◽  
Zhenqiang Yao

Accurate numerical modeling of laser shock processing, a typical complex physical process, is very difficult because several input parameters in the model are uncertain in a range. And numerical simulation of this high dynamic process is very computational expensive. The Bayesian Gaussian process method dealing with multivariate output is introduced to overcome these difficulties by constructing a predictive model. Experiments are performed to collect the physical data of shock indentation profiles by varying laser power densities and spot sizes. A two-dimensional finite element model combined with an analytical shock pressure model is constructed to obtain the data from numerical simulation. By combining observations from experiments and numerical simulation of laser shock process, Bayesian inference for the Gaussian model is completed by sampling from the posterior distribution using Morkov chain Monte Carlo. Sensitivities of input parameters are analyzed by the hyperparameters of Gaussian process model to understand their relative importance. The calibration of uncertain parameters is provided with posterior distributions to obtain concentration of values. The constructed predictive model can be computed efficiently to provide an accurate prediction with uncertainty quantification for indentation profile by comparing with experimental data.


Sign in / Sign up

Export Citation Format

Share Document