scholarly journals On jet-wake flame stabilization in scramjet: A LES/RANS study from chemical kinetic and fluid-dynamical perspectives

2021 ◽  
pp. 107255
Author(s):  
Kun Wu ◽  
Peng Zhang ◽  
Xuejun Fan
Author(s):  
Aravind Ramachandran ◽  
Venkateswaran Narayanaswamy ◽  
Kevin M. Lyons

Turbulent combustion of non-premixed jets issuing into a vitiated coflow is studied at coflow temperatures that do not significantly exceed the fuel auto-ignition temperatures, with the objective of observing the global features of lifted flames in this operating temperature regime and the role played by auto-ignition in flame stabilization. Three distinct modes of flame base motions are identified, which include a fluctuating lifted flame base (mode A), avalanche downstream motion of the flame base (mode B), and the formation and propagation of auto-ignition kernels (mode C). Reducing the confinement length of the hot coflow serves to highlight the role of auto-ignition in flame stabilization when the flame is subjected to destabilization by ambient air entrainment. The influence of auto-ignition is further assessed by computing ignition delay times for homogeneous CH4/air mixtures using chemical kinetic simulations and comparing them against the flow transit time corresponding to mean flame liftoff height of the bulk flame base. It is inferred from these studies that while auto-ignition is an active flame stabilization mechanism in this regime, the effect of turbulence may be crucial in determining the importance of auto-ignition toward stabilizing the flame at the conditions studied. An experimental investigation of auto-ignition characteristics at various jet Reynolds numbers reveals that turbulence appears to have a suppressing effect on the active role of auto-ignition in flame stabilization.


1997 ◽  
Author(s):  
E. Koc-Alkislar ◽  
L. Lourenco ◽  
A. Krothapalli ◽  
P. Strykowski ◽  
E. Koc-Alkislar ◽  
...  

Author(s):  
Rafael Torres Teixeira ◽  
Rafaela Sehnem ◽  
Letícia Kaufmann ◽  
Daniela Buske ◽  
Regis Sperotto de Quadros

1987 ◽  
Vol 122 ◽  
pp. 551-552
Author(s):  
L.A.M. Nejad ◽  
T. J. Millar

We have developed a time-dependent chemical kinetic model to describe the chemistry in the circumstellar envelopes of cool stars, with particular reference to IRC + 10216. Our detailed calculations show that ion-molecule reactions are important in the formation of many of the species observed in IRC + 10216.


1994 ◽  
Vol 99 (2) ◽  
pp. 288-294 ◽  
Author(s):  
Jing-Tang Yang ◽  
Chang-Wu Yen ◽  
Go-Long Tsai

Sign in / Sign up

Export Citation Format

Share Document