scholarly journals Aircraft emission mitigation by changing route altitude: A multi-model estimate of aircraft NOx emission impact on O3 photochemistry

2014 ◽  
Vol 95 ◽  
pp. 468-479 ◽  
Author(s):  
Ole Amund Søvde ◽  
Sigrun Matthes ◽  
Agnieszka Skowron ◽  
Daniela Iachetti ◽  
Ling Lim ◽  
...  
Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1146
Author(s):  
Aleksei Vjunov ◽  
Karl C. Kharas ◽  
Vasileios Komvokis ◽  
Amy Dundee ◽  
Bilge Yilmaz

There appears to be consensus among the general public that curtailing harmful emissions resulting from industrial, petrochemical and transportation sectors is a common good. However, there is also a need for balancing operating expenditures for applying the required technical solutions and implementing advanced emission mitigation technologies to meet desired sustainability goals. The emission of NOx from Fluid Catalytic Cracking (FCC) units in refineries for petroleum processing is a major concern, especially for those units located in densely populated urban settings. In this work we strive to review options towards cost-efficient and pragmatic emissions mitigation using optimal amounts of precious metal while evaluating the potential benefits of typical promoter dopant packages. We demonstrate that at present catalyst development level the refinery is no longer forced to make a promoter selection based on preconceived notions regarding precious metal activity but can rather make decisions based on the best “total cost” financial impact to the operation without measurable loss of the CO/NOx emission selectivity.


2020 ◽  
pp. 51-74
Author(s):  
I. A. Bashmakov

The article presents the key results of scenario projections that underpinned the Strategy for long-term low carbon economic development of the Russian Federation to 2050, including analysis of potential Russia’s GHG emission mitigation commitments to 2050 and assessment of relevant costs, benefits, and implications for Russia’s GDP. Low carbon transformation of the Russian economy is presented as a potential driver for economic growth that offers trillions-of-dollars-worth market niches for low carbon products by mid-21st century. Transition to low carbon economic growth is irreversible. Lagging behind in this technological race entails a security risk and technological backwardness hazards.


2013 ◽  
Vol 12 (12) ◽  
pp. 2473-2478 ◽  
Author(s):  
Khalid M. Saqr ◽  
Mazlan Abdul Wahid

Author(s):  
Joseph E. Aldy ◽  
William A. Pizer ◽  
Keigo Akimoto

Author(s):  
Somchai Pathomsiri ◽  
Ali Haghani ◽  
Paul M. Schonfeld

Vehicle miles traveled (VMT) is an important factor in the development of transportation plans, emission mitigation measures, and energy conservation policies. Therefore, estimation of VMT is a crucial task supporting such plans and policies. This research addresses the estimation of VMT in households owning multiple vehicles. This sector is expected to use vehicles differently from single-vehicle households because usage of any vehicle may depend on usage of other vehicles. Previous studies concluded that there is a substitution effect between usages of two vehicles (i.e., greater usage of one vehicle lessens usage of the other). In view of more recent changes in sociodemographic structure, the problem was revisited with the 2001 National Household Travel Survey database. The proposed VMT model is a system of simultaneous equations. Each equation explains the VMT for one of the household's vehicles. The three-stage least-squares method was used to estimate the coefficients. A case study of two-vehicle households was investigated. The resulting model shows that VMT can be explained by variables such as the vehicle's newness, number of potential car users in a household, and household income. Surprisingly, the results show not a substitution effect but a spilling effect. The VMT of the first vehicle does not depend on how much the second vehicle is driven. However, increased use of the first vehicle tends to spill over and increase the use of the second one. Some explanation of this behavior shift is provided.


2012 ◽  
Vol 512-515 ◽  
pp. 2135-2142 ◽  
Author(s):  
Yu Peng Wu ◽  
Zhi Yong Wen ◽  
Yue Liang Shen ◽  
Qing Yan Fang ◽  
Cheng Zhang ◽  
...  

A computational fluid dynamics (CFD) model of a 600 MW opposed swirling coal-fired utility boiler has been established. The chemical percolation devolatilization (CPD) model, instead of an empirical method, has been adapted to predict the nitrogen release during the devolatilization. The current CFD model has been validated by comparing the simulated results with the experimental data obtained from the boiler for case study. The validated CFD model is then applied to study the effects of ratio of over fire air (OFA) on the combustion and nitrogen oxides (NOx) emission characteristics. It is found that, with increasing the ratio of OFA, the carbon content in fly ash increases linearly, and the NOx emission reduces largely. The OFA ratio of 30% is optimal for both high burnout of pulverized coal and low NOx emission. The present study provides helpful information for understanding and optimizing the combustion of the studied boiler


Chemosphere ◽  
2021 ◽  
pp. 130855
Author(s):  
Tian Feng ◽  
Shuyu Zhao ◽  
Naifang Bei ◽  
Suixin Liu ◽  
Guohui Li

Sign in / Sign up

Export Citation Format

Share Document