Characterization of NOx-Ox relationships during daytime interchange of air masses over a mountain pass in the Mexico City megalopolis

2018 ◽  
Vol 177 ◽  
pp. 100-110 ◽  
Author(s):  
J.S. García-Yee ◽  
R. Torres-Jardón ◽  
H. Barrera-Huertas ◽  
T. Castro ◽  
O. Peralta ◽  
...  
Keyword(s):  
2019 ◽  
Vol 34 (5) ◽  
pp. 522-539
Author(s):  
Emiliano Di Luzio ◽  
Ilenia Arienzo ◽  
Simona Boccuti ◽  
Anna De Meo ◽  
Gianluca Sottili

2007 ◽  
Vol 7 (3) ◽  
pp. 9203-9233 ◽  
Author(s):  
C. Fountoukis ◽  
A. Nenes ◽  
A. Sullivan ◽  
R. Weber ◽  
T. VanReken ◽  
...  

Abstract. Fast measurements of aerosol and gas-phase constituents coupled with the ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of semivolatile inorganic species and phase state of Mexico City aerosol sampled at the T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partitioning agrees well with measurements. PM2.5 is insensitive to changes in ammonia but is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol is assumed to follow the deliquescent phase diagram. Treating crustal species as "equivalent sodium" (rather than explicitly) in the thermodynamic equilibrium calculations introduces important biases in predicted aerosol water uptake, nitrate and ammonium; neglecting crustals further increases errors dramatically. This suggests that explicitly considering crustals in the thermodynamic calculations are required to accurately predict the partitioning and phase state of aerosols.


2017 ◽  
Vol 194 ◽  
pp. 190-201 ◽  
Author(s):  
Giovanni Carabali ◽  
Héctor Raúl Estévez ◽  
Mauro Valdés-Barrón ◽  
Roberto Bonifaz-Alfonzo ◽  
David Riveros-Rosas ◽  
...  

2010 ◽  
Vol 10 (1) ◽  
pp. 219-237 ◽  
Author(s):  
R. Subramanian ◽  
G. L. Kok ◽  
D. Baumgardner ◽  
A. Clarke ◽  
Y. Shinozuka ◽  
...  

Abstract. A single particle soot photometer (SP2) was operated on the NCAR C-130 during the MIRAGE campaign (part of MILAGRO), sampling black carbon (BC) over Mexico. The highest BC concentrations were measured over Mexico City (sometimes as much as 2 μg/m3) and over hill-fires to the south of the city. The age of plumes outside of Mexico City was determined using a combination of HYSPLIT trajectories, WRF-FLEXPART modeling and CMET balloon tracks. As expected, older, diluted air masses had lower BC concentrations. A comparison of carbon monoxide (CO) and BC suggests a CO background of around 65 ppbv, and a background-corrected BC/COnet ratio of 2.89±0.89 (ng/m3-STP)/ppbv (average ± standard deviation). This ratio is similar for fresh emissions over Mexico City, as well as for aged airmasses. Comparison of light absorption measured with a particle soot absorption photometer (PSAP) and the SP2 BC suggests a BC mass-normalized absorption cross-section (MAC) of 10.9±2.1 m2/g at 660 nm (or 13.1 m2/g @ 550 nm, assuming MAC is inversely dependent on wavelength). This appears independent of aging and similar to the expected absorption cross-section for aged BC, but values, particularly in fresh emissions, could be biased high due to instrument artifacts. SP2-derived BC coating indicators show a prominent thinly-coated BC mode over the Mexico City Metropolitan Area (MCMA), while older air masses show both thinly-coated and thickly-coated BC. Some 2-day-old plumes do not show a prominent thickly-coated BC mode, possibly due to preferential wet scavenging of the likely-hydrophilic thickly-coated BC.


2019 ◽  
Vol 99 ◽  
pp. 01006
Author(s):  
Sanaz Moghim ◽  
Reyhaneh Ramezanpoor

Atmospheric aerosols affect the Earth's climate, air quality, and thus human health. This study used the Aerosol Optical Depth (AOD) and the Ångström exponent to cluster different particle types over the Lake Urmia Basin. This classification found desert dust and marine (mixed with continental or local-pollution aerosols) as two main aerosol types over the region, while their sources are not well defined. Although different air masses and wind circulation over the study domain in varied months can help to distinguish aerosol sources, measurements are crucial for a complete evaluation.


2020 ◽  
Vol 739 ◽  
pp. 140358
Author(s):  
V.C. Shruti ◽  
Fermín Pérez-Guevara ◽  
Priyadarsi D. Roy ◽  
I. Elizalde-Martínez ◽  
Gurusamy Kutralam-Muniasamy

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
L. Yang ◽  
S. Mukherjee ◽  
G. Pandithurai ◽  
V. Waghmare ◽  
P. D. Safai

AbstractAssessment of Sea Salt (SS) and Non-Sea Salt (NSS) aerosols in rainwater is important to understand the characterization of marine and continental aerosols and their source pathways. Sea salt quantification based on standard seawater ratios are primarily constrained with high uncertainty with its own limitations. Here, by the novelty of k-mean clustering and Positive Matrix Factorization (PMF) analysis, we segregate the air masses into two distinct clusters (oceanic and continental) during summer monsoon period signifying the complex intermingle of sources that act concomitantly. The rainwater composition during strong south-westerly wind regimes (cluster 2-oceanic) was profoundly linked with high sea salt and dust, whereas north-westerly low wind regimes (cluster 1-continental) showed an increase in SO42− and NO3−. However, SO42− abundance over NO3− in rain-water depicted its importance as a major acidifying ion at the region. The satellite-based observations indicate the presence of mid-tropospheric dust at the top (3–5 km) and marine sea salt at bottom acts as a “sandwich effect” for maritime clouds that leads to elevated Ca2+, Na+, Mg2+, and Cl− in rainwater. This characteristic feature is unique as sea spray generation due to high surface winds and dust aloft is only seen during this period. Furthermore, four source factors (secondary inorganic aerosol, mixed dust & sea salt, biomass burning & fertilizer use, and calcium neutralization) derived from PMF analysis showed contribution from local activities as well as long-range transport as dominant sources for the rainwater species.


2012 ◽  
Vol 34 (9-10) ◽  
pp. 3625-3635 ◽  
Author(s):  
Sara Segura ◽  
Víctor Estellés ◽  
María Pilar Utrillas ◽  
Anna Raquel Esteve ◽  
José Antonio Martínez-Lozano
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document