scholarly journals Historical dry deposition of air pollution in the urban background in Oslo, Norway, compared to Western European data

2021 ◽  
Vol 267 ◽  
pp. 118777
Author(s):  
Terje Grøntoft
2017 ◽  
Vol 25 ◽  
pp. 1-10 ◽  
Author(s):  
Mira Aničić Urošević ◽  
Gordana Vuković ◽  
Petar Jovanović ◽  
Milorad Vujičić ◽  
Aneta Sabovljević ◽  
...  

2020 ◽  
Author(s):  
Meiyun Lin ◽  
Larry Horowitz ◽  
Yuanyu Xie ◽  
Fabien Paulot ◽  
Sergey Malyshev ◽  
...  

<p>This study highlights a previously under-appreciated “climate penalty” feedback mechanism - namely, substantial reductions of ozone uptake by water stressed vegetation – as a missing piece to the puzzle of why European ozone pollution episodes have not decreased as expected in recent decades, despite marked reductions in regional emissions of ozone precursors due to regulatory changes. The most extreme ozone pollution episodes are linked to heatwaves and droughts, which are increasing in frequency and intensity over Europe, with severe impacts on natural and human systems. Under drought stress, plants close their stomata to reduce water loss, consequently limiting the ozone uptake by vegetation (a component of dry deposition), leading to increased surface ozone concentrations. Such land-biosphere feedbacks are often overlooked in prior air quality projections, owing to a lack of process-based model formulations. Here, we use six decades of observations and Earth system model simulations (1960-2018) with an interactive dry deposition scheme to show that declining ozone removal by water-stressed vegetation in the warming climate exacerbate ozone air pollution over Europe. Incorporated into a dynamic vegetation land – atmospheric chemistry – climate model, the dry deposition scheme mechanistically describes the response of ozone deposition to atmospheric CO<sub>2 </sub>concentration, canopy air vapor pressure deficit, and soil water availability. Our observational and modeling analyses reveal drought stress causing as much as 70% reductions in ozone removal by forests. Reduced ozone removal by water-stressed vegetation worsens peak ozone episodes during European mega-droughts, such as the 2003 event, offsetting much of the air quality improvements gained from regional emission controls. Accounting for vegetation feedbacks leads to a three-fold increase in high surface ozone events above 80 ppbv (8-hour average) and a 20% increase in the sensitivity of ozone pollution extremes (95<sup>th </sup>percentile) to increasing temperature. As the frequency of hot and dry summers is expected to increase in the coming decades, this ozone climate penalty could be severe and therefore needs to be considered when designing clean air policy in the European Union. </p><p>Notes: This study is currently under review for possible publication in Nature Climate Change. </p>


2013 ◽  
Vol 32 (3) ◽  
pp. 27-37 ◽  
Author(s):  
Robert Kruszyk

Abstract The study presents the results of research conducted in the years 2010-2012 in pine stands in Western Pomerania. The research included physicochemical properties of bulk precipitation and throughfall. The results confirm that despite a decrease in the total throughfall in the interception process, the size of mineral and organic depositions in pine stands exceeded values recorded for bulk precipitation. It was caused both by the process of enriching the throughfall with (K+, Mg2+) rinsed out of needles and leaves and by washing off the dry deposition (NH4+, Cl-, Na+, SO42-, NO3 -). The share of leaching processes for K+ was 74.1%, while for Mg2+ 23.6% of the total load of these elements brought to the ground with throughfall. In the case of Ca2+ no canopy leaching was observed for this element. The throughfall acidification processes were mostly caused by NO3-.


2020 ◽  
Vol 11 (4) ◽  
pp. 646-666 ◽  
Author(s):  
Victor H. Valencia ◽  
Ole Hertel ◽  
Matthias Ketzel ◽  
Gregor Levin

2001 ◽  
Vol 1 ◽  
pp. 304-311 ◽  
Author(s):  
Andrzej Bytnerowicz ◽  
Pamela E. Padgett ◽  
Sally D. Parry ◽  
Mark E. Fenn ◽  
Michael J. Arbaugh

Atmospheric deposition of nitrogen (N) in California ecosystems is ecologically significant and highly variable, ranging from about 1 to 45 kg/ha/year. The lowest ambient concentrations and deposition values are found in the eastern and northern parts of the Sierra Nevada Mountains and the highest in parts of the San Bernardino and San Gabriel Mountains that are most exposed to the Los Angeles air pollution plume. In the Sierra Nevada Mountains, N is deposited mostly in precipitation, although dry deposition may also provide substantial amounts of N. On the western slopes of the Sierra Nevada, the majority of airborne N is in reduced forms as ammonia (NH3) and particulate ammonium (NH4+) from agricultural activities in the California Central Valley. In southern California, most of the N air pollution is in oxidized forms as nitrogen oxides (NOx), nitric acid (HNO3), and particulate nitrate (NO3–) resulting from fossil fuel combustion and subsequent complex photochemical reactions. In southern California, dry deposition of gases and particles provides most (up to 95%) of the atmospheric N to forests and other ecosystems. In the mixed-conifer forest zone, elevated deposition of N may initially benefit growth of vegetation, but chronic effects may be expressed as deterioration of forest health and sustainability. HNO3vapor alone has a potential for toxic effects causing damage of foliar surfaces of pines and oaks. In addition, dry deposition of predominantly HNO3has lead to changes in vegetation composition and contamination of ground- and stream water where terrestrial N loading is high. Long-term, complex interactions between N deposition and other environmental stresses such as elevated ozone (O3), drought, insect infestations, fire suppression, or intensive land management practices may affect water quality and sustainability of California forests and other ecosystems.


2018 ◽  
Author(s):  
Francis D. Pope ◽  
Michael Gatari ◽  
David Ng’ang’a ◽  
Alexander Poynter ◽  
Rhiannon Blake

Abstract. East African countries face an increasing threat from poor air quality, stemming from rapid urbanisation, population growth and a steep rise in fuel use and motorization rates. With few air quality monitoring systems available, this study provides the much needed high temporal resolution data to investigate the concentrations of particulate matter (PM) air pollution in Kenya. Calibrated low cost optical particle counters (OPCs) were deployed in Kenya in three locations: two in the capital of Nairobi and one in a rural location in the outskirts of Nanyuki, which is upwind of Nairobi. The two Nairobi sites consist of an urban background site and a roadside site. The instruments were composed of an Alphasense OPC-N2 optical particle counter (OPC) ran with a raspberry pi low cost microcomputer, packaged in a weather proof box. Measurements were conducted over a two-month period (February–March 2017) with an intensive study period when all measurements were active at all sites lasting two weeks. When collocated, the three OPC-N2 instruments demonstrated good inter-instrument precision with a coefficient of variance of 8.8 ± 2.0 % in the PM2.5 fraction. The low cost sensors had an absolute PM mass concentration calibration using a collocated gravimetric measurement at the urban background site in Nairobi. The mean daily PM1 mass concentration measured at the urban roadside, urban background and rural background sites were 23.9, 16.1, 8.8 µg m−3. The mean daily PM2.5 mass concentration measured at the urban roadside, urban background and rural background sites were 36.6, 24.8, 13.0 µg m−3. The mean daily PM10 mass concentration measured at the urban roadside, urban background and rural background sites were 93.7, 53.0, 19.5 µg m−3. The urban measurements in Nairobi showed that particulate matter concentrations regularly exceed WHO guidelines in both the PM10 and PM2.5 size ranges. Following a Lenschow type approach we can estimate the urban and roadside increments that are applicable to Nairobi. Median urban and roadside increments are 33.1 and 43.3 µg m−3 for PM10, respectively, the median urban and roadside increments are 7.1 and 18.3 µg m−3 for PM2.5, respectively, and the median urban and roadside increments are 4.7 and 12.6 µg m−3 for PM1, respectively. These increments highlight the importance of both the urban and roadside increments to urban air pollution in Nairobi. A clear diurnal behaviour in PM mass concentration was observed at both urban sites, which peaks during the morning and evening Nairobi rush hours; this was consistent with the high measured roadside increment indicating vehicular traffic being a dominant source of particulate matter in the city, accounting for approximately 48.1, 47.5, and 57.2 % of the total particulate matter loading in the PM10, PM2.5 and PM1 size ranges, respectively. Collocated meteorological measurements at the urban sites were collected, allowing for an understanding of the location of major sources of particulate matter at the two sites. The potential problems of using low cost sensors for PM measurement without gravimetric calibration available at all sites are discussed. This study shows that calibrated low cost sensors can be used successfully to measure air pollution in cities like Nairobi. It demonstrates that low cost sensors could be used to create an affordable and reliable network to monitor air quality in cities.


Author(s):  
Kateryna Fuks ◽  
Sabine Hertel ◽  
Anja Viehmann ◽  
Michael Nonnemacher ◽  
Susanne Moebus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document