scholarly journals Analysis of the relationship between urban background air pollution concentrations and the personal exposure of office workers in Dublin, Ireland, using baseline separation techniques

2011 ◽  
Vol 2 (1) ◽  
pp. 80-88 ◽  
Author(s):  
Aonghus McNabola ◽  
Andrew McCreddin ◽  
Laurence W. Gill ◽  
Brian M. Broderick
2020 ◽  
Vol 11 (4) ◽  
pp. 646-666 ◽  
Author(s):  
Victor H. Valencia ◽  
Ole Hertel ◽  
Matthias Ketzel ◽  
Gregor Levin

Toxics ◽  
2013 ◽  
Vol 1 (1) ◽  
pp. 60-76 ◽  
Author(s):  
Andrew McCreddin ◽  
Laurence Gill ◽  
Brian Broderick ◽  
Aonghus McNabola

Author(s):  
Bo Pieter Johannes Andrée

AbstractThe fast spread of severe acute respiratory syndrome coronavirus 2 has resulted in the emergence of several hot-spots around the world. Several of these are located in areas associated with high levels of air pollution. This study investigates the relationship between exposure to particulate matter and COVID-19 incidence in 355 municipalities in the Netherlands. The results show that atmospheric particulate matter with diameter less than 2.5 is a highly significant predictor of the number of confirmed COVID-19 cases and related hospital admissions. The estimates suggest that expected COVID-19 cases increase by nearly 100 percent when pollution concentrations increase by 20 percent. The association between air pollution and case incidence is robust in the presence of data on health-related preconditions, proxies for symptom severity, and demographic control variables. The results are obtained with ground-measurements and satellite-derived measures of atmospheric particulate matter as well as COVID-19 data from alternative dates. The findings call for further investigation into the association between air pollution and SARS-CoV-2 infection risk. If particulate matter plays a significant role in COVID-19 incidence, it has strong implications for the mitigation strategies required to prevent spreading.HighlightsBackgroundResearch on viral respiratory infections has found that infection risks increase following exposure to high concentrations of particulate matter. Several hot-spots of Severe Acute Respiratory Syndrome Coronavirus 2 infections are in areas associated with high levels of air pollution.ApproachThis study investigates the relationship between exposure to particulate matter and COVID-19 incidence in 355 municipalities in the Netherlands using data on confirmed cases and hospital admissions coded by residence, along with local PM2.5, PM10, population density, demographics and health-related pre-conditions. The analysis utilizes different regression specifications that allow for spatial dependence, nonlinearity, alternative error distributions and outlier treatment.ResultsPM2.5 is a highly significant predictor of the number of confirmed COVID-19 cases and related hospital admissions. Taking the WHO guideline of 10mcg/m3 as a baseline, the estimates suggest that expected COVID-19 cases increase by nearly 100% when pollution concentrations increase by 20%.ConclusionThe findings call for further investigation into the association between air pollution on SARS-CoV-2 infection risk. If particulate matter plays a significant role in the incidence of COVID-19 disease, it has strong implications for the mitigation strategies required to prevent spreading, particularly in areas that have high levels of pollution.


2017 ◽  
Vol 68 (4) ◽  
pp. 841-846
Author(s):  
Hai-Ying Liu ◽  
Daniel Dunea ◽  
Mihaela Oprea ◽  
Tom Savu ◽  
Stefania Iordache

This paper presents the approach used to develop the information chain required to reach the objectives of the EEA Grants� RokidAIR project in two Romanian cities i.e., Targoviste and Ploiesti. It describes the PM2.5 monitoring infrastructure and architecture to the web-based GIS platform, the early warning system and the decision support system, and finally, the linking of air pollution to health effects in children. In addition, it shows the analysis performance of the designed system to process the collected time series from various data sources using the benzene concentrations monitored in Ploiesti. Moreover, this paper suggests that biomarkers, mobile technologies, and Citizens� Observatories are potential perspectives to improve data coverage by the provision of near-real-time air quality maps, and provide personal exposure and health assessment results, enabling the citizens� engagement and behavioural change. This paper also addresses new fields in nature-based solutions to improve air quality, and studies on air pollution and its mental health effects in the urban areas of Romania.


2021 ◽  
pp. 103052
Author(s):  
Phuong T.M. Tran ◽  
Max G. Adam ◽  
Kwok Wai Tham ◽  
Stefano Schiavon ◽  
Jovan Pantelic ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Heather E. Volk ◽  
Bo Park ◽  
Calliope Hollingue ◽  
Karen L. Jones ◽  
Paul Ashwood ◽  
...  

Abstract Background Perinatal exposure to air pollution and immune system dysregulation are two factors consistently associated with autism spectrum disorders (ASD) and other neurodevelopmental outcomes. However, little is known about how air pollution may influence maternal immune function during pregnancy. Objectives To assess the relationship between mid-gestational circulating levels of maternal cytokines/chemokines and previous month air pollution exposure across neurodevelopmental groups, and to assess whether cytokines/chemokines mediate the relationship between air pollution exposures and risk of ASD and/or intellectual disability (ID) in the Early Markers for Autism (EMA) study. Methods EMA is a population-based, nested case–control study which linked archived maternal serum samples collected during weeks 15–19 of gestation for routine prenatal screening, birth records, and Department of Developmental Services (DDS) records. Children receiving DDS services for ASD without intellectual disability (ASD without ID; n = 199), ASD with ID (ASD with ID; n = 180), ID without ASD (ID; n = 164), and children from the general population (GP; n = 414) with no DDS services were included in this analysis. Serum samples were quantified for 22 cytokines/chemokines using Luminex multiplex analysis technology. Air pollution exposure for the month prior to maternal serum collection was assigned based on the Environmental Protection Agency’s Air Quality System data using the maternal residential address reported during the prenatal screening visit. Results Previous month air pollution exposure and mid-gestational maternal cytokine and chemokine levels were significantly correlated, though weak in magnitude (ranging from − 0.16 to 0.13). Ten pairs of mid-pregnancy immune markers and previous month air pollutants were significantly associated within one of the child neurodevelopmental groups, adjusted for covariates (p < 0.001). Mid-pregnancy air pollution was not associated with any neurodevelopmental outcome. IL-6 remained associated with ASD with ID even after adjusting for air pollution exposure. Conclusion This study suggests that maternal immune activation is associated with risk for neurodevelopmental disorders. Furthermore, that prenatal air pollution exposure is associated with small, but perhaps biologically relevant, effects on maternal immune system function during pregnancy. Additional studies are needed to better evaluate how prenatal exposure to air pollution affects the trajectory of maternal immune activation during pregnancy, if windows of heightened susceptibility can be identified, and how these factors influence neurodevelopment of the offspring.


Sign in / Sign up

Export Citation Format

Share Document