Impact assessment of continental and marine air-mass on size-resolved aerosol chemical composition over coastal atmosphere: Significant organic contribution in coarse mode fraction

2021 ◽  
Vol 248 ◽  
pp. 105216
Author(s):  
A.R. Aswini ◽  
Prashant Hegde
2014 ◽  
Vol 119 (20) ◽  
pp. 11,850-11,863 ◽  
Author(s):  
Jurgita Ovadnevaite ◽  
Darius Ceburnis ◽  
Stephan Leinert ◽  
Manuel Dall'Osto ◽  
Manjula Canagaratna ◽  
...  

2015 ◽  
Vol 118 ◽  
pp. 118-126 ◽  
Author(s):  
Anna Wonaschütz ◽  
Anselm Demattio ◽  
Robert Wagner ◽  
Julia Burkart ◽  
Naděžda Zíková ◽  
...  

2015 ◽  
Vol 110 ◽  
pp. 36-44 ◽  
Author(s):  
Jun Tao ◽  
Leiming Zhang ◽  
Jian Gao ◽  
Han Wang ◽  
Faihe Chai ◽  
...  

2010 ◽  
Vol 408 (12) ◽  
pp. 2482-2491 ◽  
Author(s):  
C. Theodosi ◽  
U. Im ◽  
A. Bougiatioti ◽  
P. Zarmpas ◽  
O. Yenigun ◽  
...  

2010 ◽  
Vol 2010 ◽  
pp. 1-15 ◽  
Author(s):  
D. G. Kaskaoutis ◽  
P. G. Kosmopoulos ◽  
H. D. Kambezidis ◽  
P. T. Nastos

Aerosol optical depth at 550 nm () and fine-mode (FM) fraction data from Terra-MODIS were obtained over the Greater Athens Area covering the period February 2000–December 2005. Based on both and FM values three main aerosol types have been discriminated corresponding to urban/industrial aerosols, clean maritime conditions, and coarse-mode, probably desert dust, particles. Five main sectors were identified for the classification of the air-mass trajectories, which were further used in the analysis of the ( and FM data for the three aerosol types). The HYSPLIT model was used to compute back trajectories at three altitudes to investigate the relation between -FM and wind sector depending on the altitude. The accumulation of local pollution is favored in spring and corresponds to air masses at lower altitudes originating from Eastern Europe and the Balkan. Clean maritime conditions are rare over Athens, limited in the winter season and associated with air masses from the Western or Northwestern sector. The coarse-mode particles origin seems to be more complicated proportionally to the season. Thus, in summer the Northern sector dominates, while in the other seasons, and especially in spring, the air masses belong to the Southern sector enriched with Saharan dust aerosols.


2013 ◽  
Vol 13 (4) ◽  
pp. 9355-9399 ◽  
Author(s):  
F. Mei ◽  
A. Setyan ◽  
Q. Zhang ◽  
J. Wang

Abstract. During the Carbonaceous Aerosols and Radiative Effects Study (CARES), activation fraction of size-resolved aerosol particles and aerosol chemical composition were characterized at the T1 site (~60 km downwind of Sacramento, California) from 10 June to 28 June 2010. The hygroscopicity of CCN-active particles (κCCN) with diameter from 100 to 171 nm, derived from the size-resolved activated fraction, varied from 0.10 to 0.21, with an average of 0.15, which was substantially lower than that proposed for continental sites in earlier studies. The low κCCN value was due to the high organic volume fraction, averaged over 80% at the T1 site. The derived κCCN exhibited little diurnal variation, consistent with the relatively constant organic volume fraction observed. At any time, over 90% of the size selected particles with diameter between 100 and 171 nm were CCN active, suggesting most particles within this size range were aged background particles. Due to the large organic volume fraction, organic hygroscopicity (κorg) strongly impacted particle hygroscopicity and therefore calculated CCN concentration. For vast majority of the cases, an increase of κorg from 0.03 to 0.18, which are within the typical range, doubled the calculated CCN concentration. Organic hygroscopicity was derived from κCCN and aerosol chemical composition, and its variations with the fraction of total organic mass spectral signal at m/z 44 (f44) and O : C were compared to results from previous studies. Overall, the relationships between κorg and f44 are quite consistent for organic aerosol (OA) observed during field studies and those formed in smog chamber. Compared to the relationship between κorg and f44, the relationship between κorg and O : C exhibits more significant differences among different studies, suggesting κorg may be better parameterized using f44. A least squares fit yielded κorg = 2.04 (± 0.07) × f44 − 0.11 (± 0.01) with the Pearson R2 value of 0.71. One possible explanation for the stronger correlation between κorg and f44 is that the m/z 44 signal (mostly contributed by the CO2+ ion) is more closely related to organic acids, which may dominate the overall κorg due to their relatively high water solubility and hygroscopicity.


2019 ◽  
Vol 202 ◽  
pp. 149-159 ◽  
Author(s):  
Gerson P. Almeida ◽  
Antônio T. Bittencourt ◽  
Marçal S. Evangelista ◽  
Marcelo S. Vieira-Filho ◽  
Adalgiza Fornaro

Sign in / Sign up

Export Citation Format

Share Document