scholarly journals Analysing real world data streams with spatio-temporal correlations: Entropy vs. Pearson correlation

2018 ◽  
Vol 88 ◽  
pp. 87-100 ◽  
Author(s):  
Maria Bermudez-Edo ◽  
Payam Barnaghi ◽  
Klaus Moessner
Smart Cities ◽  
2021 ◽  
Vol 4 (1) ◽  
pp. 349-371
Author(s):  
Hassan Mehmood ◽  
Panos Kostakos ◽  
Marta Cortes ◽  
Theodoros Anagnostopoulos ◽  
Susanna Pirttikangas ◽  
...  

Real-world data streams pose a unique challenge to the implementation of machine learning (ML) models and data analysis. A notable problem that has been introduced by the growth of Internet of Things (IoT) deployments across the smart city ecosystem is that the statistical properties of data streams can change over time, resulting in poor prediction performance and ineffective decisions. While concept drift detection methods aim to patch this problem, emerging communication and sensing technologies are generating a massive amount of data, requiring distributed environments to perform computation tasks across smart city administrative domains. In this article, we implement and test a number of state-of-the-art active concept drift detection algorithms for time series analysis within a distributed environment. We use real-world data streams and provide critical analysis of results retrieved. The challenges of implementing concept drift adaptation algorithms, along with their applications in smart cities, are also discussed.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Yange Sun ◽  
Zhihai Wang ◽  
Yang Bai ◽  
Honghua Dai ◽  
Saeid Nahavandi

It is common in real-world data streams that previously seen concepts will reappear, which suggests a unique kind of concept drift, known as recurring concepts. Unfortunately, most of existing algorithms do not take full account of this case. Motivated by this challenge, a novel paradigm was proposed for capturing and exploiting recurring concepts in data streams. It not only incorporates a distribution-based change detector for handling concept drift but also captures recurring concept by storing recurring concepts in a classifier graph. The possibility of detecting recurring drifts allows reusing previously learnt models and enhancing the overall learning performance. Extensive experiments on both synthetic and real-world data streams reveal that the approach performs significantly better than the state-of-the-art algorithms, especially when concepts reappear.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Tinofirei Museba ◽  
Fulufhelo Nelwamondo ◽  
Khmaies Ouahada

Beyond applying machine learning predictive models to static tasks, a significant corpus of research exists that applies machine learning predictive models to streaming environments that incur concept drift. With the prevalence of streaming real-world applications that are associated with changes in the underlying data distribution, the need for applications that are capable of adapting to evolving and time-varying dynamic environments can be hardly overstated. Dynamic environments are nonstationary and change with time and the target variables to be predicted by the learning algorithm and often evolve with time, a phenomenon known as concept drift. Most work in handling concept drift focuses on updating the prediction model so that it can recover from concept drift while little effort has been dedicated to the formulation of a learning system that is capable of learning different types of drifting concepts at any time with minimum overheads. This work proposes a novel and evolving data stream classifier called Adaptive Diversified Ensemble Selection Classifier (ADES) that significantly optimizes adaptation to different types of concept drifts at any time and improves convergence to new concepts by exploiting different amounts of ensemble diversity. The ADES algorithm generates diverse base classifiers, thereby optimizing the margin distribution to exploit ensemble diversity to formulate an ensemble classifier that generalizes well to unseen instances and provides fast recovery from different types of concept drift. Empirical experiments conducted on both artificial and real-world data streams demonstrate that ADES can adapt to different types of drifts at any given time. The prediction performance of ADES is compared to three other ensemble classifiers designed to handle concept drift using both artificial and real-world data streams. The comparative evaluation performed demonstrated the ability of ADES to handle different types of concept drifts. The experimental results, including statistical test results, indicate comparable performances with other algorithms designed to handle concept drift and prove their significance and effectiveness.


2020 ◽  
Vol 9 (6) ◽  
pp. 404
Author(s):  
Ruihong Yao ◽  
Fei Wang ◽  
Shuhui Chen ◽  
Shuang Zhao

The popularity of mobile locate-enabled devices and Location Based Service (LBS) generates massive spatio-temporal data every day. Due to the close relationship between behavior patterns and movement trajectory, trajectory data mining has been applied in numerous fields to find the behavior pattern. Among them, discovering traveling companions is one of the most fundamental techniques in these areas. This paper proposes a flexible framework named GroupSeeker for discovering traveling companions in vast real-world trajectory data. In the real-world data resource, it is significant to avoid the companion candidate omitting problem happening in the time-snapshot-slicing-based method. These methods do not work well with the sparse real-world data, which is caused by the equipment sampling failure or manual intervention. In this paper, a 5-stage framework including Data Preprocessing, Spatio-temporal Clustering, Candidate Voting, Pseudo-companion Filtering, and Group Merging is proposed to discover traveling companions. The framework even works well when there is a long time span during several days. The experiments result on two real-world data sources which offer massive amount of data subsets with different scale and different sampling frequencies show the effective and robustness of this framework. Besides, the proposed framework has a higher-efficiency performing when discovering satisfying companions over a long-term period.


2016 ◽  
Vol 22 ◽  
pp. 219
Author(s):  
Roberto Salvatori ◽  
Olga Gambetti ◽  
Whitney Woodmansee ◽  
David Cox ◽  
Beloo Mirakhur ◽  
...  

2020 ◽  
Author(s):  
Jersy Cardenas ◽  
Gomez Nancy Sanchez ◽  
Sierra Poyatos Roberto Miguel ◽  
Luca Bogdana Luiza ◽  
Mostoles Naiara Modroño ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document