Automated regional seismic damage assessment of buildings using an unmanned aerial vehicle and a convolutional neural network

2020 ◽  
Vol 109 ◽  
pp. 102994 ◽  
Author(s):  
Chen Xiong ◽  
Qiangsheng Li ◽  
Xinzheng Lu
2021 ◽  
Vol 11 (17) ◽  
pp. 8258
Author(s):  
Chen Xiong ◽  
Jie Zheng ◽  
Liangjin Xu ◽  
Chengyu Cen ◽  
Ruihao Zheng ◽  
...  

This study introduces a multiple-input convolutional neural network (MI-CNN) model for the seismic damage assessment of regional buildings. First, ground motion sequences together with building attribute data are adopted as inputs of the proposed MI-CNN model. Second, the prediction accuracy of MI-CNN model is discussed comprehensively for different scenarios. The overall prediction accuracy is 79.7%, and the prediction accuracies for all scenarios are above 77%, indicating a good prediction performance of the proposed method. The computation efficiency of the proposed method is 340 times faster than that of the nonlinear multi-degree-of-freedom shear model using time history analysis. Third, a case study is conducted for reinforced concrete (RC) frame buildings in Shenzhen city, and two seismic scenarios (i.e., M6.5 and M7.5) are studied for the area. The simulation results of the area indicate a good agreement between the MI-CNN model and the benchmark model. The outcomes of this study are expected to provide a useful reference for timely emergency response and disaster relief after earthquakes.


Author(s):  
MUHAMMAD EFAN ABDULFATTAH ◽  
LEDYA NOVAMIZANTI ◽  
SYAMSUL RIZAL

ABSTRAKBencana di Indonesia didominasi oleh bencana hidrometeorologi yang mengakibatkan kerusakan dalam skala besar. Melalui pemetaan, penanganan yang menyeluruh dapat dilakukan guna membantu analisa dan penindakan selanjutnya. Unmanned Aerial Vehicle (UAV) dapat digunakan sebagai alat bantu pemetaan dari udara. Namun, karena faktor kamera maupun perangkat pengolah citra yang tidak memenuhi spesifikasi, hasilnya menjadi kurang informatif. Penelitian ini mengusulkan Super Resolution pada citra udara berbasis Convolutional Neural Network (CNN) dengan model DCSCN. Model terdiri atas Feature Extraction Network untuk mengekstraksi ciri citra, dan Reconstruction Network untuk merekonstruksi citra. Performa DCSCN dibandingkan dengan Super Resolution CNN (SRCNN). Eksperimen dilakukan pada dataset Set5 dengan nilai scale factor 2, 3 dan 4. Secara berurutan SRCNN menghasilkan nilai PSNR dan SSIM sebesar 36.66 dB / 0.9542, 32.75 dB / 0.9090 dan 30.49 dB / 0.8628. Performa DCSCN meningkat menjadi 37.614dB / 0.9588, 33.86 dB / 0.9225 dan 31.48 dB / 0.8851.Kata kunci: citra udara, deep learning, super resolution ABSTRACTDisasters in Indonesia are dominated by hydrometeorological disasters, which cause large-scale damage. Through mapping, comprehensive handling can be done to help the analysis and subsequent action. Unmanned Aerial Vehicle (UAV) can be used as an aerial mapping tool. However, due to the camera and image processing devices that do not meet specifications, the results are less informative. This research proposes Super Resolution on aerial imagery based on Convolutional Neural Network (CNN) with the DCSCN model. The model consists of Feature Extraction Network for extracting image features and Reconstruction Network for reconstructing images. DCSCN's performance is compared to CNN Super Resolution (SRCNN). Experiments were carried out on the Set5 dataset with scale factor values 2, 3, and 4. The SRCNN sequentially produced PSNR and SSIM values of 36.66dB / 0.9542, 32.75dB / 0.9090 and 30.49dB / 0.8628. DCSCN's performance increased to 37,614dB / 0.9588, 33.86dB / 0.9225 and 31.48dB / 0.8851.Keywords: aerial imagery, deep learning, super resolution


2020 ◽  
Vol 12 (10) ◽  
pp. 1668 ◽  
Author(s):  
Quanlong Feng ◽  
Jianyu Yang ◽  
Yiming Liu ◽  
Cong Ou ◽  
Dehai Zhu ◽  
...  

Vegetable mapping from remote sensing imagery is important for precision agricultural activities such as automated pesticide spraying. Multi-temporal unmanned aerial vehicle (UAV) data has the merits of both very high spatial resolution and useful phenological information, which shows great potential for accurate vegetable classification, especially under complex and fragmented agricultural landscapes. In this study, an attention-based recurrent convolutional neural network (ARCNN) has been proposed for accurate vegetable mapping from multi-temporal UAV red-green-blue (RGB) imagery. The proposed model firstly utilizes a multi-scale deformable CNN to learn and extract rich spatial features from UAV data. Afterwards, the extracted features are fed into an attention-based recurrent neural network (RNN), from which the sequential dependency between multi-temporal features could be established. Finally, the aggregated spatial-temporal features are used to predict the vegetable category. Experimental results show that the proposed ARCNN yields a high performance with an overall accuracy of 92.80%. When compared with mono-temporal classification, the incorporation of multi-temporal UAV imagery could significantly boost the accuracy by 24.49% on average, which justifies the hypothesis that the low spectral resolution of RGB imagery could be compensated by the inclusion of multi-temporal observations. In addition, the attention-based RNN in this study outperforms other feature fusion methods such as feature-stacking. The deformable convolution operation also yields higher classification accuracy than that of a standard convolution unit. Results demonstrate that the ARCNN could provide an effective way for extracting and aggregating discriminative spatial-temporal features for vegetable mapping from multi-temporal UAV RGB imagery.


Sign in / Sign up

Export Citation Format

Share Document