Comments on “An ISS self-triggered implementation of linear controllers” [Automatica 46 (2010) 1310–1314]

Automatica ◽  
2021 ◽  
pp. 109755
Author(s):  
MirSaleh Bahavarnia
Keyword(s):  
2019 ◽  
Vol 12 (4) ◽  
pp. 192
Author(s):  
Sergey Anatolevich Gayvoronskiy ◽  
Tatiana Ezangina ◽  
Maxim Pushkarev ◽  
Ivan Khozhaev

Author(s):  
John Cooper ◽  
Chengyu Cao ◽  
Jiong Tang

This paper presents an L1 adaptive controller for pressure control using an engine bleed valve in an aircraft air management system (AMS). The air management system is composed of two pressure-regulating bleed valves, a temperature control valve, a flow control valve, and a heat exchanger/precooler. Valve hysteresis due to backlash and dry friction is included in the system model. The nonlinearities involved in the system cause oscillations under linear controllers, which decrease component life. This paper is the unique in the consideration of these uncertainties for control design. This paper presents simulation results using the adaptive controller and compares them to those using a proportional–integral (PI) controller.


Author(s):  
Swati Sucharita Pradhan ◽  
Raseswari Pradhan ◽  
Bidyadhar Subudhi

Purpose The dynamics of the PV microgrid (PVMG) system are highly nonlinear and uncertain in nature. It is encountered with parametric uncertainties and disturbances. This system cannot be controlled properly by conventional linear controllers. H− controller and sliding mode controller (SMC) may capable of controlling it with ease. Due to its inherent dynamics, SMC introduces unwanted chattering into the system output waveforms. This paper aims to propose a controller to reduce this chattering. Design/methodology/approach This paper presents redesign of the SMC by modifying its sliding surface and tuning its parameters by employing water-evaporation-optimization (WEO) based metaheuristic algorithm. Findings By using this proposed water-evaporation-optimization algorithm-double integral sliding mode controller (WEOA-DISMC), the chattering magnitude is diminished greatly. Further, to examine which controller between H8 controller and proposed WEOA-DISMC performs better in both normal and uncertain situations, a comparative analysis has been made in this paper. The considered comparison parameters are reference tracking, disturbance rejection and robust stability. Originality/value WEO tuned DISMC for PVMG system is the contribution.


2004 ◽  
Vol 10 (11) ◽  
pp. 1699-1735 ◽  
Author(s):  
A. G. Kelkar ◽  
S. M. Joshi

In this paper we present a controller synthesis approach for elastic systems based on the mathematical concept of passivity. For nonlinear and linear elastic systems that are inherently passive, robust control laws are presented that guarantee stability. Examples of such systems include flexible structures with col-located and compatible actuators and sensors, and multibody space-based robotic manipulators. For linear elastic systems that are not inherently passive, methods are presented for rendering them passive by compensation. The “passified” systems can then be robustly controlled by a class of passive linear controllers that guarantee stability despite uncertainties and inaccuracies in the mathematical models. The controller synthesis approach is demonstrated by application to five different types of elastic systems.


Sign in / Sign up

Export Citation Format

Share Document