Action Spectra and Excitation Emission Matrices reveal the broad range of usable photosynthetic active radiation for Phaeodactylum tricornutum

Author(s):  
Andrei Herdean ◽  
Christopher Hall ◽  
Le Long Pham ◽  
Sean Mcdonald Miller ◽  
Mathieu Pernice ◽  
...  
2016 ◽  
Vol 13 (19) ◽  
pp. 5587-5608 ◽  
Author(s):  
Natalia Restrepo-Coupe ◽  
Alfredo Huete ◽  
Kevin Davies ◽  
James Cleverly ◽  
Jason Beringer ◽  
...  

Abstract. A direct relationship between gross ecosystem productivity (GEP) estimated by the eddy covariance (EC) method and Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation indices (VIs) has been observed in many temperate and tropical ecosystems. However, in Australian evergreen forests, and particularly sclerophyll and temperate woodlands, MODIS VIs do not capture seasonality of GEP. In this study, we re-evaluate the connection between satellite and flux tower data at four contrasting Australian ecosystems, through comparisons of GEP and four measures of photosynthetic potential, derived via parameterization of the light response curve: ecosystem light use efficiency (LUE), photosynthetic capacity (Pc), GEP at saturation (GEPsat), and quantum yield (α), with MODIS vegetation satellite products, including VIs, gross primary productivity (GPPMOD), leaf area index (LAIMOD), and fraction of photosynthetic active radiation (fPARMOD). We found that satellite-derived biophysical products constitute a measurement of ecosystem structure (e.g. leaf area index – quantity of leaves) and function (e.g. leaf level photosynthetic assimilation capacity – quality of leaves), rather than GEP. Our results show that in primarily meteorological-driven (e.g. photosynthetic active radiation, air temperature, and/or precipitation) and relatively aseasonal ecosystems (e.g. evergreen wet sclerophyll forests), there were no statistically significant relationships between GEP and satellite-derived measures of greenness. In contrast, for phenology-driven ecosystems (e.g. tropical savannas), changes in the vegetation status drove GEP, and tower-based measurements of photosynthetic activity were best represented by VIs. We observed the highest correlations between MODIS products and GEP in locations where key meteorological variables and vegetation phenology were synchronous (e.g. semi-arid Acacia woodlands) and low correlation at locations where they were asynchronous (e.g. Mediterranean ecosystems). However, we found a statistical significant relationship between the seasonal measures of photosynthetic potential (Pc and LUE) and VIs, where each ecosystem aligns along a continuum; we emphasize here that knowledge of the conditions in which flux tower measurements and VIs or other remote sensing products converge greatly advances our understanding of the mechanisms driving the carbon cycle (phenology and climate drivers) and provides an ecological basis for interpretation of satellite-derived measures of greenness.


2011 ◽  
Vol 48 (4) ◽  
pp. 501-521 ◽  
Author(s):  
Zhiqiang Gao ◽  
Xiaoping Xie ◽  
Wei Gao ◽  
Ni-Bin Chang

2009 ◽  
Vol 1 (2) ◽  
pp. 280-283
Author(s):  
Vishwanath Prasad

The present study indicated that the Increase in UV-B exposure ( 312.67 nm, 2.5 Wm-2) to Spirulina fusiformis, a highly protein-rich (60-71%) helically coiled, unicellular, polymorphous cyanobacterium not only bleached phycocyanin (PC) but also decreased its content Absorption spectra of UV-B treated culture showed significant decline in the absorbance at the peak 620nm indicating the presence of PC. The absorbance decreased by increasing UV-B exposure. One hour simultaneous UV-B+PAR (Photosynthetic Active Radiation) exposure protected 33 percent damage of phycocyanin.


2020 ◽  
Author(s):  
Haixiang Liu ◽  
Haotian Bai ◽  
Neng Yan ◽  
Tin-Yan Wong ◽  
Dongfeng Dang ◽  
...  

Human population is now faced with grand challenges such as global warming, food shortage and energy sustainability, which could be partially solved by massively increasing the growth and yield of photosynthetic organisms which capture the light energy to convert carbon dioxide and water into usable chemical energy. Cyanobacteria and eukaryotic microalgae are considered as attractive targets to be exploited by the algal factory because of their fast growth, low cost cultivation, less arable land and the diversity of high-value chemical substances produced. Many optical approaches have been introduced to increase the efficiency in artificial culturing systems, such as adding a luminescent layer that absorbs ultraviolet light and emits photosynthetic active radiation for cyanobacteria. In this work, we introduced luminogens with aggregation-induced emission characteristics (AIEgens) into the growth medium of a marine cyanobacteria. These hydrophobic AIEgens formed highly emissive luminogenic aggregates in the aqueous <a>medium and</a> dispersed around the cyanobacteria. Remarkedly, the number of cyanobacteria incubated in the medium with AIE aggregates was 5-fold more than the control group after 14-day culturing. The increased photosynthetic active radiation and the change of cyanobacteria protein expression in photosynthesis and metabolism might be the reason. Our study is the first using organic luminogenic aggregates as optical engineering inside the growth medium to dramatically increase the growth of cyanobacteria and demonstrated that AIEgens is promising technologies in the development of algal factories.


2021 ◽  
Author(s):  
Yuhan Zheng ◽  
Wataru Takeuchi

Abstract Mangrove ecosystems play an important role in global carbon budget, however, the quantitative relationships between environmental drivers and productivity in these forests remain poorly understood. This study presented a remote sensing (RS)-based productivity model to estimate the light use efficiency (LUE) and gross primary production (GPP) of mangrove forests in China. Firstly, LUE model considered the effects of tidal inundation and therefore involved sea surface temperature (SST) and salinity as environmental scalars. Secondly, the downscaling effect of photosynthetic active radiation (PAR) on the mangrove LUE was quantified according to different PAR values. Thirdly, the maximum LUE varied with temperature and was therefore determined based on the response of daytime net ecosystem exchange and PAR at different temperatures. Lastly, GPP was estimated by combining the LUE model with the fraction of absorbed photosynthetically active radiation from Sentinel-2 images. The results showed that the LUE model developed for mangrove forests has higher overall accuracy (RMSE = 0.0051, R2 = 0.64) than the terrestrial model (RMSE = 0.0220, R2 = 0.24). The main environmental stressor for the photosynthesis of mangrove forests in China was PAR. The estimated GPP was, in general, in agreement with the in-situ measurement from the two carbon flux towers. Compared to the MODIS GPP product, the derived GPP had higher accuracy, with RMSE improving from 39.09 to 19.05 g C/m2/8 days in 2012, and from 33.76 to 19.51 g C/m2/8 days in 2015. The spatiotemporal distributions of the mangrove GPP revealed that GPP was most strongly controlled by environmental conditions, especially temperature and PAR, as well as the distribution of mangroves. These results demonstrate the potential of the RS-based productivity model for scaling up GPP in mangrove forests, a key to explore the carbon cycle of mangrove ecosystems at national and global scales.


1979 ◽  
Author(s):  
L. P. Raymond

A system for the intensive cultivation of the marine diatom Phaeodactylum tricornutum is described and evaluated. Unique features of the system include: (a) the incorporation of solar heat collection device which transmits only photosynthetically active radiation (PAR) to the growing culture; (b) the formulation of a new seawater enrichment medium that promotes physiological responses not previously observed in culture; and (c) the use of a foam fractionation device which separates microalgae, from the culture media, adds CO2-enriched air, and/or simultaneously recirculates the growing culture in shallow layers through an interconnecting series of hemicylindrical channels. The outdoor system demonstrated that very high ash-free dry weight yields of Phaeodactylum tricornutum are produced, a result of high photosynthetic efficiency. Actual yield over an eight-day period was equivalent to 39.57 ash-free dry tons/acre-year. Observed photosynthetic efficiency, based on photosynthetically active radiation incident upon the external surface of the system, is 13.1 percent, nearly three times the limit previously considered economically practical. The data indicate that greater yields may be expected using this system at locations receiveing higher insolation. A conservative projection is that 80 ash-free dry tons/acre-year will be realized in land regions receiveing 3 × 1010 Btu/acre-year total solar radiation. It is concluded that this system clearly warrants further investigation to determine its capacity to produce large and economical quantities of algal biomass for use as potential petroleum-fuel substitutes. The development of a comprehensive and systematic bio-engineering program is recommended to upgrade and evaluate the system to its full potential.


2016 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Jianhang Ma ◽  
Kaishan Song ◽  
Zhidan Wen ◽  
Ying Zhao ◽  
Yingxin Shang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document