scholarly journals Oxidative stress and cerebral endothelial cells: Regulation of the blood–brain-barrier and antioxidant based interventions

Author(s):  
Linnea R. Freeman ◽  
Jeffrey N. Keller
2009 ◽  
Vol 29 (12) ◽  
pp. 1933-1945 ◽  
Author(s):  
Servio H Ramirez ◽  
Raghava Potula ◽  
Shongshan Fan ◽  
Tess Eidem ◽  
Anil Papugani ◽  
...  

Methamphetamine (METH), a potent stimulant with strong euphoric properties, has a high abuse liability and long-lasting neurotoxic effects. Recent studies in animal models have indicated that METH can induce impairment of the blood–brain barrier (BBB), thus suggesting that some of the neurotoxic effects resulting from METH abuse could be the outcome of barrier disruption. In this study, we provide evidence that METH alters BBB function through direct effects on endothelial cells and explore possible underlying mechanisms leading to endothelial injury. We report that METH increases BBB permeability in vivo, and exposure of primary human brain microvascular endothelial cells (BMVEC) to METH diminishes the tightness of BMVEC monolayers in a dose- and time-dependent manner by decreasing the expression of cell membrane-associated tight junction (TJ) proteins. These changes were accompanied by the enhanced production of reactive oxygen species, increased monocyte migration across METH-treated endothelial monolayers, and activation of myosin light chain kinase (MLCK) in BMVEC. Antioxidant treatment attenuated or completely reversed all tested aspects of METH-induced BBB dysfunction. Our data suggest that BBB injury is caused by METH-mediated oxidative stress, which activates MLCK and negatively affects the TJ complex. These observations provide a basis for antioxidant protection against brain endothelial injury caused by METH exposure.


2020 ◽  
Vol 21 (23) ◽  
pp. 9078
Author(s):  
Ji Hae Seo ◽  
Takakuni Maki ◽  
Nobukazu Miyamoto ◽  
Yoon Kyong Choi ◽  
Kelly K. Chung ◽  
...  

A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1695
Author(s):  
William A. Banks ◽  
Elizabeth M. Rhea

The blood–brain barrier (BBB) is a network of specialized endothelial cells that regulates substrate entry into the central nervous system (CNS). Acting as the interface between the periphery and the CNS, the BBB must be equipped to defend against oxidative stress and other free radicals generated in the periphery to protect the CNS. There are unique features of brain endothelial cells that increase the susceptibility of these cells to oxidative stress. Insulin signaling can be impacted by varying levels of oxidative stress, with low levels of oxidative stress being necessary for signaling and higher levels being detrimental. Insulin must cross the BBB in order to access the CNS, levels of which are important in peripheral metabolism as well as cognition. Any alterations in BBB transport due to oxidative stress at the BBB could have downstream disease implications. In this review, we cover the interactions of oxidative stress at the BBB, how insulin signaling is related to oxidative stress, and the impact of the BBB in two diseases greatly affected by oxidative stress and insulin resistance: diabetes mellitus and Alzheimer’s disease.


Sign in / Sign up

Export Citation Format

Share Document