Characterization of isoflavonoids as inhibitors of β-hydroxyacyl-acyl carrier protein dehydratase (FabZ) from Moraxella catarrhalis : Kinetics, spectroscopic, thermodynamics and in silico studies

2018 ◽  
Vol 1862 (3) ◽  
pp. 726-744 ◽  
Author(s):  
Vijay Kumar ◽  
Anchal Sharma ◽  
Shivendra Pratap ◽  
Pravindra Kumar
Author(s):  
I Made Prasetya Kurniawan ◽  
Prawesty Diah Utami ◽  
Risma Risma

Indonesia is a country that has abundant natural resources; one of them is the Baru laut plant which is the latest breakthrough because it has an active substance that can be used as an anti-malaria medicine. It is very beneficial because there has been a case of resistance of artemisinin derivatives in Indonesia. The purpose of this study was to determine the potential of active compounds in Baru laut plants (Thespesia populnea (L.) Soland ex. Correa) against the Plasmodium falciparum enoyl acyl carrier protein reductase receptor in P. falciparum through in silico studies. This research is purely experimental using the One-Shot Experimental Study research design method. Observations were only made once between the variables studied through three analyzes, namely prediction analysis of active compound content, prediction analysis of the mechanism of action of active compound content, and prediction analysis of ADME active compound. The study results show that there are three active compounds in Baru laut plants that have antimalarial potential. The three compounds include gossypol, linoleic acid, and beta-sitosterol, have their respective potential in becoming a malaria drug. This study concludes that Baru laut plants have potential as anti-malaria drugs.


2021 ◽  
Author(s):  
Apurba Dutta ◽  
Priyanka Trivedi ◽  
Dipshikha Gogoi ◽  
Pankaj Chetia ◽  
Vinita Chaturvedi ◽  
...  

Abstract In vitro anti-tubercular activity of a series of 15 novel 2,3-dihydroquinazolin-4(1H)-one analogues were evaluated against Mycobacterium tuberculosis H37Ra (ATCC 25177 strain). Among the series, seven compounds showed moderate to good anti-TB activity with minimum inhibitory concentration (MIC) values ranging from 25.0-12.5 μg/mL. Further, in silico experiments were carried out to identify the probable ligand-protein interaction. Molecular docking of the target compounds into the active site of enzymes 1DQY Antigen 85C from Mycobacterium Tuberculosis and 2NSD Enoyl Acyl Carrier Protein Reductase reveals notable information on the possible binding interactions.


2017 ◽  
Vol 214 ◽  
pp. 152-160 ◽  
Author(s):  
Wangdan Xiong ◽  
Qian Wei ◽  
Pingzhi Wu ◽  
Sheng Zhang ◽  
Jun Li ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 33 (22) ◽  
pp. no-no
Author(s):  
Christopher Arthur ◽  
Russell J. Cox ◽  
John Crosby ◽  
Mujiber M. Rahman ◽  
Thomas J. Simpson ◽  
...  

2017 ◽  
Vol 10 (17) ◽  
pp. 127
Author(s):  
Berwi Fazri Pamudi ◽  
Azizahwati Azizahwati ◽  
Arry Yanuar

  Objective: Malaria is a parasitic infection that causes worldwide health problems. The absence of an effective vaccine and Plasmodium strains that are resistant to antimalarial drugs emphasize the importance of developing new chemotherapeutic agents. The use of computers for in-silico screening, or virtual screening, is currently being developed as a method for discovering antimalarial drugs. One of the enzymes that can support the development of the malaria parasite is the Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR). Inhibition of these enzymes leads to Type II lipid biosynthesis inhibition on the parasite.Methods: This research investigates the use of virtual screening to find PfENR inhibitor candidates. A molecular docking method using GOLD software and the medicinal plants in Indonesia database will be used. This target has been optimized by the removal of residues and the addition of charge. Ligand is expected to be an inhibitor of PfENR.Results: In-silico screening, or virtual screening, found that the top five compounds with the highest GOLD score at trial are kaempferol 3-rhamnosyl- (1-3)-rhamnosyl-(1-6)-glucoside; cyanidin 3,5-di-(6-malonylglucoside); 8-hydroxyapigenin 8-(2’’, 4’’-disulfato glucuronide); epigallocatechin 3,5,-di- O-gallat; quercetin 3,4’-dimethyl ether 7-alpha-L-arabinofuranosyl-(1-6)-glucoside. They had GOLD scores of 94.73, 95.90, 86.46, 85.39, and 84.40, respectively.Conclusions: There are two candidate inhibitor compounds from tea (Camellia sinensis), which have potential for development as an antimalarial drug, which are kaempferol 3-rhamnosyl-(1-3)-rhamnosyl-(1-6)-glucoside and epigallocatechin 3,5,-di-O-gallate, with a GOLD score of 94.73 and 85.39, respectively.


Sign in / Sign up

Export Citation Format

Share Document