scholarly journals Biphasic regulation of type II phosphatidylinositol-4 kinase by sphingosine: Cross talk between glycero- and sphingolipids in the kidney

2014 ◽  
Vol 1838 (3) ◽  
pp. 1003-1009 ◽  
Author(s):  
Thiago Lemos ◽  
Karine S. Verdoorn ◽  
Luciana Nogaroli ◽  
Thiago Britto-Borges ◽  
Thaís A. Bonilha ◽  
...  
2002 ◽  
Vol 115 (8) ◽  
pp. 1769-1775 ◽  
Author(s):  
Petra de Graaf ◽  
Elsa E. Klapisz ◽  
Thomas K. F. Schulz ◽  
Alfons F. M. Cremers ◽  
Arie J. Verkleij ◽  
...  

Whereas most phosphatidylinositol 4-kinase (PtdIns 4-kinase) activity is localized in the cytoplasm, PtdIns 4-kinase activity has also been detected in membranedepleted nuclei of rat liver and mouse NIH 3T3 cells. Here we have characterized the PtdIns 4-kinase that is present in nuclei from NIH 3T3 cells. Both type II and type III PtdIns 4-kinase activity were observed in the detergent-insoluble fraction of NIH 3T3 cells. Dissection of this fraction into cytoplasmic actin filaments and nuclear lamina-pore complexes revealed that the actin filament fraction contains solely type II PtdIns 4-kinase,whereas lamina-pore complexes contain type III PtdIns 4-kinase activity. Using specific antibodies, the nuclear PtdIns 4-kinase was identified as PtdIns 4-kinase β. Inhibition of nuclear export by leptomycin B resulted in an accumulation of PtdIns 4-kinase β in the nucleus. These data demonstrate that PtdIns 4-kinase β is present in the nuclei of NIH 3T3 fibroblasts,suggesting a specific function for this kinase in nuclear processes.


1991 ◽  
Vol 273 (1) ◽  
pp. 63-66 ◽  
Author(s):  
G C Endemann ◽  
A Graziani ◽  
L C Cantley

A monoclonal antibody has been developed against the type II PtdIns 4-kinase from bovine brain. This antibody, 4C5G, causes greater than 90% inhibition of the type II PtdIns 4-kinase from bovine brain, rat brain and human erythrocytes. However, it fails to inhibit type III PtdIns 4-kinase from bovine brain or PtdIns 3-kinase from rat liver. These results suggest that type II and type III PtdIns 4-kinases are distinct gene products, and that 4C5G will be useful in studying the function of the type II PtdIns 4-kinase.


2007 ◽  
Vol 9 (10) ◽  
pp. 2381-2390 ◽  
Author(s):  
Javier Pizarro-Cerdá ◽  
Bernard Payrastre ◽  
Ying-Jie Wang ◽  
Esteban Veiga ◽  
Helen L. Yin ◽  
...  

2003 ◽  
Vol 100 (7) ◽  
pp. 3995-4000 ◽  
Author(s):  
J. Guo ◽  
M. R. Wenk ◽  
L. Pellegrini ◽  
F. Onofri ◽  
F. Benfenati ◽  
...  

2018 ◽  
Vol 32 (3) ◽  
pp. 230-235 ◽  
Author(s):  
Kristyn C. Cantarutti ◽  
Jason Burgess ◽  
Julie A. Brill ◽  
Jeffrey S. Dason

2019 ◽  
Vol 47 (18) ◽  
pp. 9542-9556 ◽  
Author(s):  
Alessandro Negri ◽  
Marcin Jąkalski ◽  
Aleksandra Szczuka ◽  
Leszek P Pryszcz ◽  
Iwona Mruk

AbstractRestriction-modification (R–M) systems represent an effective mechanism of defence against invading bacteriophages, and are widely spread among bacteria and archaea. In acquiring a Type II R–M system via horizontal gene transfer, the new hosts become more resistant to phage infection, through the action of a restriction endonuclease (REase), which recognizes and cleaves specific target DNAs. To protect the host cell's DNA, there is also a methyltransferase (MTase), which prevents DNA cleavage by the cognate REase. In some R–M systems, the host also accepts a cis-acting transcription factor (C protein), which regulates the counteracting activities of REase and MTase to avoid host self-restriction. Our study characterized the unexpected phenotype of Escherichia coli cells, which manifested as extensive cell filamentation triggered by acquiring the Csp231I R–M system from Citrobacter sp. Surprisingly, we found that the cell morphology defect was solely dependent on the C regulator. Our transcriptome analysis supported by in vivo and in vitro assays showed that C protein directly silenced the expression of the RacR repressor to affect the Rac prophage-related genes. The rac locus ydaST genes, when derepressed, exerted a toxicity indicated by cell filamentation through an unknown mechanism. These results provide an apparent example of transcription factor cross-talk, which can have significant consequences for the host, and may represent a constraint on lateral gene transfer.


2014 ◽  
Vol 393 (1-2) ◽  
pp. 9-15 ◽  
Author(s):  
Naveen Bojjireddy ◽  
Ranjeet Kumar Sinha ◽  
Gosukonda Subrahmanyam

1998 ◽  
Vol 273 (36) ◽  
pp. 23126-23133 ◽  
Author(s):  
Kiyotaka Nishikawa ◽  
Alex Toker ◽  
Karen Wong ◽  
Paola A. Marignani ◽  
Franz-Josef Johannes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document