scholarly journals The mechanism and regulation of vesicular glutamate transport: Coordination with the synaptic vesicle cycle

2020 ◽  
Vol 1862 (12) ◽  
pp. 183259 ◽  
Author(s):  
Jacob Eriksen ◽  
Fei Li ◽  
Robert H. Edwards
Biochemistry ◽  
2005 ◽  
Vol 44 (9) ◽  
pp. 3159-3165 ◽  
Author(s):  
Markus Knipp ◽  
Gabriele Meloni ◽  
Bernd Roschitzki ◽  
Milan Vašák

Physiology ◽  
1995 ◽  
Vol 10 (1) ◽  
pp. 42-46
Author(s):  
G Thiel

Synaptic vesicles play a fundamental role in brain function by mediating the release of neurotransmitters. Neurons do not use an entirely unique secretion apparatus but rather a modification of the general secretion machinery. Moreover, the synaptic vesicle cycle has many similarities with intracellular vesicle trafficking pathways.


Author(s):  
Dae-Hyuk Kweon ◽  
Byoungjae Kong ◽  
Yeon-Kyun Shin

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhike Zhou ◽  
Jun Bai ◽  
Shanshan Zhong ◽  
Rongwei Zhang ◽  
Kexin Kang ◽  
...  

Objective. The objective of this study was to investigate the potential molecular mechanisms of ATPase H+ transporting V1 subunit A (ATP6V1A) underlying Alzheimer’s disease (AD). Methods. Microarray expression data of human temporal cortex samples from the GSE118553 dataset were profiled to screen for differentially expressed genes (DEGs) between AD/control and ATP6V1A-low/high groups. Correlations of coexpression modules with AD and ATP6V1A were assessed by weight gene correlation network analysis (WGCNA). DEGs strongly interacting with ATP6V1A were extracted to construct global regulatory network. Further cross-talking pathways of ATP6V1A were identified by functional enrichment analysis. Diagnostic performance of ATP6V1A in AD prediction was evaluated using area under the curve (AUC) analysis. Results. The mean expression of ATP6V1A was significantly downregulated in AD compared with nondementia controls. A total of 1,364 DEGs were overlapped from AD/control and ATP6V1A-low/high groups. Based on these DEGs, four coexpression modules were predicted by WGCNA. The blue, brown, and turquoise modules were significantly correlated with AD and low ATP6V1A, whose DEGs were enriched in phagosome, oxidative phosphorylation, synaptic vesicle cycle, focal adhesion, and gamma-aminobutyric acidergic (GABAergic) synapse. Global regulatory network was constructed to identify the cross-talking pathways of ATP6V1A, such as synaptic vesicle cycle, phagosome, and oxidative phosphorylation. According to the AUC value of 74.2%, low ATP6V1A expression accurately predicted the occurrence of AD. Conclusions. Our findings highlighted the pleiotropic roles of low ATP6V1A in AD pathogenesis, possibly mediated by synaptic vesicle cycle, phagosome, and oxidative phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document