scholarly journals Significant Ex-Vivo Expansion of Cord Blood (CB) Natural Killer (NK) Cells and Concomitant Decrease in CB T-Cells by Genetically Reengineered K562 Cells (K562-mbIL15-41BBL)

2009 ◽  
Vol 15 (2) ◽  
pp. 44-45
Author(s):  
J. Hochberg ◽  
B. Mar ◽  
J. Ayello ◽  
N. Day ◽  
C. van de Ven ◽  
...  
Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 499-499
Author(s):  
Jessica Hochberg ◽  
Janet Ayello ◽  
Carmella VandeVen ◽  
Jeremy Gold ◽  
Evan Cairo ◽  
...  

Abstract Abstract 499 Introduction: CD56+ NK subsets exhibit differential NK receptors (NKR) such as cytotoxicity profiles including killer-Ig-like receptors (KIR), C-lectin (NKG2) and natural cytotoxicity receptors (NCR) involved with tumor target recognition, which, in part, may play a role in adoptive cellular immunotherapy (ACI) for malignancies (Farag et al Blood, 2002). NK cell activation and NK mediated cytolysis is induced by triggering receptors such as NCR (i.e. NKp46), and NKG2 surface receptors like NKG2D (Moretta et al, Curr Opin in Immunol, 2004, Marcenaro et al, Eur J Immunol, 2003). The major limitations of the use of NK cells in ACI include lack of tumor recognition and/or limited numbers of viable and functionally active NK cells (Shereck/Cairo et al. PBC, 2007). To circumvent these limitations, methods to expand and activate PB NK cells by genetic reengineering have been developed (Imai/Campana et al. Blood, 2005). It has been demonstrated that PB NK cells expanded with modified K562 cells expressing membrane bound IL-15 and 4-1BBL (K562-mb15-41BBL; Imai et al Blood, 2005) are significantly increased in number and maintain heterogeneous KIR expression (Fusaki/Campana et al, BJH, 2009) .We have previously reported the ex-vivo expansion, activation and cytolytic activity of CB NK cells with a cocktail of antibody and cytokines (Ayello/Cairo et al, BBMT, 2006; Ayello/Cairo, Exp Hem, 2009, In Press). Objective: In this study, we compared CB NK expansion and activation following stimulation with genetically engineered K562 cells (K562-mb15-41BBL, generously supplied by D.Campana, St Jude's Children's Hospital, Memphis, TN) with wild-type (WT) K562 cells and NK cell characterization expressing inhibiting and activating KIRs, c-lectin, NCRs and NK cytolytic activation. Methods: Following irradiation with 100Gy, K562-mb15-41BBL or WTK562 were incubated at a 1:1 ratio with fresh CB MNCs at 37C, 5% CO2 for 7 days in RPMI-1640+10IU IL-2. NKR expression (KIR2DS4, NKG2D, NKG2A, CD94, KIR3DL1, KIR2DL2, Nkp46) and LAMP-1 (CD107a) receptor expression and NK cell phenotype (CD56 dim and bright subsets) were determined by flow cytometry. Results: On Day 0, NK cells population was 3.9±1.3%. After 7 days in culture, CB NK cells were significantly increased compared to WTK562 and media alone (72±3.9 vs 43±5.9 vs 9±2.4%, p<0.01). This represented a 35-fold or 3374±385% increase of the input NK cell number. This was significantly increased compared to WTK562 (1771±300%, p<0.05). Concomitantly, there was a significant decrease in CB T cells vs WTK562 or media alone (15±2 vs 36±2 vs 51±7%, p<0.001),respectively. There was a significant increase in CD56bright vs CD56dim populations (67 vs 33%, p<0.01) following stimulation with K562-mb15-41BBL. Also, there was a 10-fold increase in CB NK cells expressing KIR3DL1 following stimulation with K562-mb15-41BBL vs WTK562 (p<0.01) and a 5-fold increase in NK KIR2DS4 expression (p<0.05), respectively. There was a significant increase in the expression of NK activation marker, CD107a, compared to WTK562 (51±0.7 vs 32±1.1,p<0.05). There was no change in CB NK cell expression of the c-lectin receptor, CD94/NKG2A and CD94/NKG2D after stimulation with K562-mb15-41BBL. A standard cryopreserved CB unit (25 ml) contains approximately 750×106 MNC. By using the smaller 5-ml aliquot (20%) of a two-aliquot bag (150×106 MNCs × 3.9%=5.8×106 NK cells), this expansion method would hypothetically yield 200×106 CB NK cells after 7 days stimulation with K562-mb15-41BBL. Conclusion: These results suggest that CB MNC can be ex-vivo expanded with K562-mb15-41BBL resulting in specific expansion of CB NK cells with increased NK KIR expression (KIR2DS4 and KIR3DL1) and NK activation (CD107a), along with a significant decrease in CB T cells. This expansion provides a means to enhance specific CB NK cell expansion for possible use for adoptive cellular immunotherapy in the post UCBT setting Disclosures: No relevant conflicts of interest to declare.


1999 ◽  
Vol 8 (2) ◽  
pp. 129-139 ◽  
Author(s):  
Danna Skea ◽  
Nan-Hua Chang ◽  
Robin Hedge ◽  
Barbara Dabek ◽  
Truman Wong ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 926 ◽  
Author(s):  
Stefania Mantovani ◽  
Barbara Oliviero ◽  
Stefania Varchetta ◽  
Dalila Mele ◽  
Mario U. Mondelli

Hepatocellular carcinoma (HCC) still represents a significant complication of chronic liver disease, particularly when cirrhosis ensues. Current treatment options include surgery, loco-regional procedures and chemotherapy, according to specific clinical practice guidelines. Immunotherapy with check-point inhibitors, aimed at rescuing T-cells from exhaustion, has been applied as second-line therapy with limited and variable success. Natural killer (NK) cells are an essential component of innate immunity against cancer and changes in phenotype and function have been described in patients with HCC, who also show perturbations of NK activating receptor/ligand axes. Here we discuss the current status of NK cell treatment of HCC on the basis of existing evidence and ongoing clinical trials on adoptive transfer of autologous or allogeneic NK cells ex vivo or after activation with cytokines such as IL-15 and use of antibodies to target cell-expressed molecules to promote antibody-dependent cellular cytotoxicity (ADCC). To this end, bi-, tri- and tetra-specific killer cell engagers are being devised to improve NK cell recognition of tumor cells, circumventing tumor immune escape and efficiently targeting NK cells to tumors. Moreover, the exciting technique of chimeric antigen receptor (CAR)-engineered NK cells offers unique opportunities to create CAR-NK with multiple specificities along the experience gained with CAR-T cells with potentially less adverse effects.


2008 ◽  
Vol 87 (2) ◽  
pp. 217-224 ◽  
Author(s):  
Yaming Wei ◽  
Yinfeng Huang ◽  
Yinze Zhang ◽  
Huayou Zhou ◽  
Qiong Cao ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 35-35
Author(s):  
Melissa A. Mazur ◽  
Young Ah Lee ◽  
Kurtzberg Joanne ◽  
Szabolcs Paul

Abstract Background: Viral infections cause significant morbidity & mortality in patients undergoing unrelated allogeneic BMT transplantation before immune reconstitution is completed. It poses a greater risk for recipients of unrelated umbilical cord blood (uUCB) transplants as there is no established antiviral immunity in naïve UCB lymphocytes available for adoptive transfer. UCB T cells also lack Th1/Tc1 cytokines, Granzymes & Perforin which are prerequisites to control viral pathogens. Another major limitation of uUCBT is the lack of donor cells available for post-transplant donor leukocyte infusions (DLI) to boost immunity or induce GVL. However, a fraction of the uCB graft could be available for T cell expansion. In this study we evaluated the feasibility of ex vivo expansion of UCB T cells. We postulated that following expansion naïve T cells may mature & acquire a phenotype compatible with effector function as assessed by expression of essential cytokines & de novo expression of members of the granzyme-perforin pathway. Methods: Thawed UBC research samples with a leukocyte content &lt;5% of an average UCB graft are processed. T cells are enriched with “EasySep” (StemCell Tech) to deplete CD14, CD16, CD19, CD56, & glycophorin A + cells. 5–7.5*105 T cells/ml are incubated with “CD3/28 T cell Expander” artificial APC beads (Dynal) in X Vivo-15 (BioWhittacker) + 200u/ml IL2 & 10% human serum in gas permeable bags. The initial purity of the T cells is 77–92%. The starting absolute T cell numbers ranged from 0.75 to 2*106 cells. Media & cytokines are added every other day to maintain a concentration of &lt;2*106 cells/ml. Results: At the end of 14 days UCB T Cells expanded 67 fold +/− 36, n=6. There are significant alterations in phenotype over the 2 weeks (Table 1) with up to 40% of T cells in cell cycle. Compared to the starting resting UCB T cells the majority of expanded cells have acquired the phenotype of activated (HLA-DR+, CD25+ T cells) memory cells, at the expense of naive/recent thymic immigrants (CD45RA+/CD62+). There is an inverted CD4/CD8 ratio due to the higher expansion rate of CD8 T cells (p=0.0035) while there is no difference in apoptosis (p=0.57). However, they all retain expression of CD28 (96% ±8%) along with CD27. Although some T cells have acquired the capacity to secrete granzymes A and B these are still almost a log below normal adult peripheral blood (PB) values & perforin has not been detected. Similarly, while post expansion significantly more T cells secrete cytokines upon PMA + ionomycin stimulation (Table 1) they are below levels of adult PB. Conclusions: From our preliminary results we can demonstrate effective expansion & partial maturation of UCB T Cells. For example, if one starts with 2*106 total T cells & expands them 67 fold this could provide for DLI ~5*106 T cells/kg for an average pediatric patient (25kg). We are further optimizing & characterizing this model for T cell activity & repertoire. In sum, ex vivo expansion with CD3/CD28 co-stimulation may provide clinically relevant numbers T cells available for adoptive immunotherapy that have also undergone partial maturation. Characterization of Expanded T Cells as % of all Lymphocytes Variable Median SD CD3+ 99.8 0.1 CD4+ 35 11 CD4+/CD8+ 2.3 2.8 CD45RA+/RO− 13 11 CD45RO+/RA− 55 22 CD25+ 42 21 CD45RA+/CD62+ 38 20 CD45RA+/CD27+/CD8+ 52 15 CD45RA−/CD27+/CD8+ 46 15 KI67/CD8+ 42 9 Ki67/CD4+ 32 7 HLA DR+ 40 13 Granzyme A/CD8+ 54 18 Granzyme B/CD8+ 2 2 Perforin/CD8+ 0 0


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 2180-2180
Author(s):  
Tokiko Nagamura-Inoue ◽  
Seiichiro Kobayashi ◽  
Kazuo Ogami ◽  
Yuki Yamamoto ◽  
Kiyoko Izawa ◽  
...  

Abstract Abstract 2180 Background: Regulatory T cells (Tregs) play an important role in immune-tolerance to allograft. Cord blood (CB) is rich in naïve T cells and is a promising source of inducible Tregs (iTregs), since it was reported that stable iTregs may be derived exclusively from naïve T cells. However, the standard method for iTregs has not yet been established. Here we studied the impact of mTOR inhibitors, rapamycin (Rap) and everolimus (Eve), on ex vivo expansion of iTregs from CB-CD4+ T cells. Methods: CB-CD4+ T cell were isolated using anti-CD4 monoclonal antibody (MAb)-conjugated magnetic beads, and cultured in a flask coated with anti-CD3/CD28 MAbs and supplemented with IL-2 and TGF-β in the presence or absence of Rap or Eve. After two weeks of culture, the total number of CD4+ T cells was calculated, and the incidence of CD25+Foxp3+ cell population among those was estimated by FACS. Results and Discussions: Both Rap and Eve significantly increased the incidence of CD25+Foxp3+ cell population in CD4+ T cells. However, Rap apparently inhibited their growth and did not increase the absolute number of CD25+Foxp3+ cells in comparison to the control. On the other hand, Eve contributed to efficient expansion of iTregs at the concentration between 1 and 50ng/ml without no significant inhibition of their growth. Expansion of CD4+ T cells with TGF-β and Eve yielded 71.5 ±23.5% purity of CD25+Foxp3+ cells which also expressed CTLA-4 as well as the memory phenotype, while the purity obtained with TGF-β only was 47.4±30.0% and that without TGF-β/Eve was 7.3±4.5%. Thus, an average of 2.95±2.8 x107 iTregs were obtained from the initial input of 5×104 CD4+ T cells. The resulting iTregs with TGF-β, TGF-β/Rap and TGF-β/Eve inhibited the proliferation of CFSE-labeled T cells stimulated with allogeneic dendritic cells. The precise mechanism for Foxp3 induction by mTOR inhibitors still remains to be elucidated. Furthermore, we found that expression of CD26 (DPP-IV) was significantly down-regulated in CD4+ T cells expanded with TGF-β and profoundly with TGF-β/Eve, while CD127 was negative after culture in all the conditions. Mean fluorescence intensity of CD26 indicated 67.5 in CD4+ T cells without TGF-β, 1.58 with TGF-β, 0.18 with TGF-β/Rap and 0.12 with TGF-β/Eve, respectively. Accordingly, CD26 negativity may be an indicator of iTregs together with Foxp3. Conclusion: mTOR inhibitor, Eve, is an efficient co-inducer of iTregs and applicable to ex vivo expansion of iTregs in a clinical setting. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 341-341
Author(s):  
Lucila Kerbauy ◽  
Mecit Kaplan ◽  
Pinaki P Banerjee ◽  
Francesca Lorraine Wei Inng Lim ◽  
Ana Karen Nunes Cortes ◽  
...  

Abstract Chimeric antigen receptors to redirect T cell specificity against tumor antigens have shown remarkable clinical responses against CD19+ malignancies. However, the manufacture of an engineered autologous T cell product is expensive and cumbersome. Natural killer (NK) cells provide an alternative source of immune effectors for the treatment of cancer. NK cell cytolytic function can be directed towards specific targets by exploiting their ability to mediate antibody-dependent cellular cytotoxicity (ADCC) through the NK cell Fc receptor, CD16 (FcγRIIIa). AFM13 is a tetravalent bispecific antibody construct based on Affimed's ROCK™ platform. AFM13 is bispecific for CD30 and CD16A, designed for the treatment of CD30 expressing malignancies. It binds CD16A on the surface of NK cells, thus activating and recruiting them to CD30 expressing tumor cells and mediating subsequent tumor cell killing. Since autologous NK effector function is impaired in many patients with malignancies, we propose to overcome this by the use of allogeneic NK cells in combination with AFM13. Cord blood (CB) is a readily available ("off-the-shelf") source of allogeneic NK cells that can be expanded to large, highly functional therapeutic doses. The feasibility and safety of therapy with allogeneic ex vivo expanded CB-derived NK cells have been shown by our group and others. In this study, we hypothesized that we can redirect the specificity of NK cells against CD30+ malignancies by preloading ex vivo activated and expanded CB-derived NK cells with AFM13 prior to adoptive infusion. Briefly, mononuclear cells were isolated from fresh or frozen CB units by ficoll density gradient centrifugation. CD56+ NK cells were cultured with rhIL-12, rhIL-18 and rhIL-15 for 16 hrs, followed by ex vivo expansion with rhIL-2 and irradiated (100 Gy) K562-based feeder cells expressing membrane-bound IL-21 and CD137-ligand (2:1 feeder cell:NK ratio). After 14 days, NK cells were loaded with serial dilutions of AFM13 (0.1, 1, 10 and 100 mg/ml). After washing twice with PBS, we tested the effector function of AFM13-loaded NK-cells (AFM13-NK) compared to expanded CB-NK cells without AFM13 against Karpas-299 (CD30 positive) and Daudi (CD30 negative) lymphoma cell lines by 51Cr release and intracellular cytokine production assays. AFM13-NK cells killed Karpas-299 cells more effectively at all effector:target ratios tested than unloaded NK cells (Figure 1) and produced statistically more INFγ and CD107a (P=0.0034; P=0.0031 respectively, n=4). In contrast, AFM13-NK cells and unloaded NK cells exerted similar cytotoxicity against Daudi cells. Next, we established the optimal concentration of AFM13 for loading (determined to be 100 μg/ml) and the optimal incubation time to obtain maximal activity (1 h) in a series of in vitro experiments. We also confirmed that the activity of AFM13-NK cells against Karpas-299 cells remains stable for at least 72h post-wash (Figure 2). Additionally, we characterized the phenotype of AFM13-NK vs. unloaded NK cells by flow cytometry using monoclonal antibodies against 22 markers, including markers of activation, inhibitory receptors, exhaustion markers and transcription factors. Compared to unloaded NK cells, AFM13-NK cells expressed higher levels of CD25, CD69, TRAIL, NKp44, granzyme B and CD57, consistent with an activated phenotype. We next tested the in vivo anti-tumor efficacy of AFM13-NK cells in an immunodeficient mouse model of FFluc-Karpas-299. Briefly, six groups of NOD/SCID/IL2Rγc null mice (n=5 per group) were transplanted by tail-vein injection with 1 x 10e5 FFluc-transduced Karpas cells. Group 1 and 6 received tumor alone or tumor + AFM13 and served as a control. Groups 2-4 receive Karpas FFLuc with either expanded NK cells or AFM13-NK cells (NK cells loaded with AFM13) or expanded NK cells and AFM13 injected separately. Group 5 received AFM13-NK cells without tumor. Initial studies confirm the antitumor activity of AFM13-NK cells. In summary, we have developed a novel premixed product, comprised of expanded CB-NK cells loaded with AFM13 to 'redirect' their specificity against CD30+ malignancies. The encouraging in vitro and in vivo data observed in this study, provide a strong rationale for a clinical trial to test the strategy of an off-the-shelf adoptive immunotherapy with AFM13-loaded CB-NK cells in patients with relapsed/refractory CD30+ malignancies. Disclosures Champlin: Sanofi: Research Funding; Otsuka: Research Funding. Koch:Affimed GmbH: Employment. Treder:Affimed GmbH: Employment. Shpall:Affirmed GmbH: Research Funding. Rezvani:Affirmed GmbH: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document