scholarly journals Synergistic Cytotoxicity of Gemcitabine, Clofarabine and Edelfosine (± DNA alkylating agent) in Lymphoma Cell Lines

2014 ◽  
Vol 20 (2) ◽  
pp. S164
Author(s):  
Ben C. Valdez ◽  
Axel Zander ◽  
Guiyun Song ◽  
David Murray ◽  
Yago Nieto ◽  
...  
2012 ◽  
Vol 40 (10) ◽  
pp. 800-810 ◽  
Author(s):  
Benigno C. Valdez ◽  
Yago Nieto ◽  
David Murray ◽  
Yang Li ◽  
Guiyun Wang ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2508-2508
Author(s):  
Andrei Ivanov ◽  
Mark S. Cragg ◽  
Tim M. Illidge

Abstract Radioimmunotherapy using radiolabeled anti-CD20 antibodies (mAb) is an effective new treatment in non-Hodgkin lymphoma with high response rates. However, the molecular mechanisms behind these impressive clinical responses are poorly understood. To elucidate these mechanisms we studied the signaling events evoked in a panel of lymphoma cell lines following treatment with anti-CD20 mAb alone or in combination with irradiation. In all three lymphoma cell-lines tested a synergistic cytotoxic effect was observed when the anti-CD20 mAb B1 was combined with irradiation. The additive effect seen with B1 mAb and radiation was not observed with Rituximab and could be reversed with MEK inhibitors U0126 and PD98059 as well as siRNA targeting MEK1 or 2. Moreover, addition of U0126 reversed the decrease in clonogenic survival triggered by treatment with B1 and irradiation. To further probe the mechanism of this synergistic cell death we used cell lines over-expressing BCL2 or crmA, to block mitochondrial and death receptor pathways, respectively. Although BCL2 and crmA over-expression mediated protection against radiation alone, it had no impact on the increased cytotoxicity induced by B1+irradiation. Morphological studies revealed gross vacuolization of the cytoplasm, yet relatively well preserved nuclei in cells treated with B1+irradiation. Taken together our data indicate that activation of the MAPK cascade is an important factor that contributes to the synergistic effect of anti-CD20 (B1) antibody and irradiation and provides important new insights into how this treatment may work in the clinic.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 3991-3991
Author(s):  
Jianli Zhou ◽  
Neha Biyani ◽  
Umesh Kathad ◽  
Aditya Kulkarni ◽  
Joseph McDermott ◽  
...  

Abstract LP-184, or (-)-hydroxyurea methylacylfulvene, is a potent DNA alkylating agent that effectively kills solid tumors. It belongs to the acylfulvene compound family known to induce DNA lesions repaired by the Transcription-Coupled Nucleotide Excision Repair (TC-NER) pathway. Here, we show that LP-284, the synthetic positive enantiomer of LP-184, exhibited the greatest and broadest hematologic cancer antiproliferative activities among the 6 acylfulvenes, including illudin S, illudin M, Irofulven (LP-100), the semisynthetic racemic LP-184, the synthetic negative enantiomer LP-184, and LP-284. The distinct pharmacological activities of LP-284 may be due to differences in metabolic activation, transport, or affinity to cellular macromolecules. To determine whether metabolic activation plays a role, we compared the correlation between the expression of Prostaglandin Reductase 1 (PTGR1), the NADPH-dependent oxidoreductase known to convert Irofulven into its active metabolite, and the IC50 of LP-184, Irofulven, and LP-284. We found that the expression level of PTGR1 is highly correlated with LP-184 (r=0.88, p=8.4e-20) and Irofulven (r=0.71, p=4.7e-10) sensitivity, but not with LP-284 (r=-0.01, p=0.93). We also found that the average expression level of PTGR1 is significantly lower in hematologic cancer cell lines (n=180) than in solid tumor cell lines (n=856), indicating the existence of an alternative LP-284 activator in hematologic cells. Next, we checked mutation status, RNA expression, protein expression, and DNA methylation of 489 oxidoreductases, but none of the enzymes was highly correlated with LP-284 activity. To further explore the potential clinical application of LP-284 in hematologic cancers, we conducted cell viability assays in 18 hematologic cancer cell lines and found that LP-284 exhibited nanomolar potency in acute lymphocytic leukemia (average IC50: 351 nM), chronic myeloid leukemia (average IC50: 360 nM), B-cell lymphoma (average IC50: 366 nM), and Multiple Myeloma (MM, IC50: 334 nM). We also investigated the therapeutic potential of LP-284 in combination with spironolactone in treating MM. Spironolactone, an FDA approved drug for hypertension, degrades one of the key TC-NER players ERCC3 in MM, which in turn makes cells more vulnerable to helix-distorting DNA lesions likely caused by LP-284. While Spironolactone alone didn't cause cytotoxicity to the MM cell line RPMI8226, it reduced LP-284 IC50 by 2.4 fold. Taken together, we have demonstrated the importance of stereochemistry in acylfulvene activity. LP-284, likely to be activated through a different route, is a unique and potent acylfulvene for hematologic cancers. Additionally, pharmacological inhibition of the TC-NER pathway greatly promoted LP-284 cytotoxicity. We hypothesize that LP-284 induces DNA lesions, which may be lethal to TC-NER deficient cells and may block transcription of short-lived fusion genes that are essential for cancer cell survival until repaired. Therefore, our discovery of the novel enantiomer LP-284 may provide a targeted therapy option for hematologic cancers with compromised DNA repair. Disclosures Zhou: Lantern Pharma: Current Employment. Biyani: Lantern Pharma: Current Employment. Kathad: Lantern Pharma: Current Employment, Current equity holder in publicly-traded company. Kulkarni: Lantern Pharma: Current Employment. McDermott: Lantern Pharma: Current Employment. Bhatia: Lantern Pharma: Current Employment.


2014 ◽  
Vol 4 (1) ◽  
pp. e171-e171 ◽  
Author(s):  
B C Valdez ◽  
A R Zander ◽  
G Song ◽  
D Murray ◽  
Y Nieto ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4829-4829
Author(s):  
Jun Chen ◽  
Jason Ramos ◽  
Mint Sirisawad ◽  
Richard A. Miller ◽  
Louie Naumovski

Abstract Motexafin gadolinium (MGd, Xcytrin®) is a tumor selective redox active drug that is directly cytotoxic to some hematolymphoid cell lines and chronic lymphocytic leukemia (CLL) patient samples. MGd has shown single agent activity in early phase II studies of lymphoma and CLL patients. Rituximab, an anti-CD20 antibody, is used widely in the treatment of B-cell malignancies. We evaluated the effects of MGd, rituximab and the combination in HF-1, a follicular lymphoma-derived cell line. Data analysis with CalcuSyn software revealed that the combination of MGd and rituximab showed synergistic growth inhibition and cytotoxicity compared to either agent used alone. MGd/rituximab activated a caspase-dependent apoptotic pathway as demonstrated by loss of mitochondrial membrane potential and PARP cleavage. Similar results were obtained with the combination of MGd and rituximab in DHL-4 and Ramos lymphoma cell lines. Since intracellular calcium ([Ca2+]i) levels have been implicated in rituximab cytotoxicity, we explored [Ca2+]i in rituximab and MGd/rituximab treated cells. Rituximab and MGd/rituximab treated cells have increased levels of [Ca2+]i. Elevation of [Ca2+]i with thapsigargin, an agent that releases calcium from internal stores or the ionophore A23187 that transports calcium into cells, results in synergistic cytotoxicity with rituximab or the MGd/rituximab combination. These in vitro findings suggest a role for [Ca2+]i in MGd/rituximab-induced cell death and support the combined use of MGd and rituximab in the treatment of B-cell lymphoma.


2020 ◽  
Author(s):  
Satsuki Murakami ◽  
Susumu Suzuki ◽  
Ichiro Hanamura ◽  
Kazuhiro Yoshikawa ◽  
Ryuzo Ueda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document