scholarly journals Wheel running alters patterns of uncontrollable stress-induced cfos mRNA expression in rat dorsal striatum direct and indirect pathways: A possible role for plasticity in adenosine receptors

2014 ◽  
Vol 272 ◽  
pp. 252-263 ◽  
Author(s):  
Peter J. Clark ◽  
Parsa R. Ghasem ◽  
Agnieszka Mika ◽  
Heidi E. Day ◽  
Jonathan J. Herrera ◽  
...  
2019 ◽  
Vol 317 (6) ◽  
pp. C1313-C1323 ◽  
Author(s):  
Matthew A. Romero ◽  
Petey W. Mumford ◽  
Paul A. Roberson ◽  
Shelby C. Osburn ◽  
Hailey A. Parry ◽  
...  

Transposable elements (TEs) are mobile DNA and constitute approximately half of the human genome. LINE-1 (L1) is the only active autonomous TE in the mammalian genome and has been implicated in a number of diseases as well as aging. We have previously reported that skeletal muscle L1 expression is lower following acute and chronic exercise training in humans. Herein, we used a rodent model of voluntary wheel running to determine whether long-term exercise training affects markers of skeletal muscle L1 regulation. Selectively bred high-running female Wistar rats ( n = 11 per group) were either given access to a running wheel (EX) or not (SED) at 5 wk of age, and these conditions were maintained until 27 wk of age. Thereafter, mixed gastrocnemius tissue was harvested and analyzed for L1 mRNA expression and DNA content along with other L1 regulation markers. We observed significantly ( P < 0.05) lower L1 mRNA expression, higher L1 DNA methylation, and less L1 DNA in accessible chromatin regions in EX versus SED rats. We followed these experiments with 3-h in vitro drug treatments in L6 myotubes to mimic transient exercise-specific signaling events. The AMP-activated protein kinase (AMPK) agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR; 4 mM) significantly decreased L1 mRNA expression in L6 myotubes. However, this effect was not facilitated through increased L1 DNA methylation. Collectively, these data suggest that long-term voluntary wheel running downregulates skeletal muscle L1 mRNA, and this may occur through chromatin modifications. Enhanced AMPK signaling with repetitive exercise bouts may also decrease L1 mRNA expression, although the mechanism of action remains unknown.


PLoS ONE ◽  
2015 ◽  
Vol 10 (11) ◽  
pp. e0141898 ◽  
Author(s):  
Peter J. Clark ◽  
Jose Amat ◽  
Sara O. McConnell ◽  
Parsa R. Ghasem ◽  
Benjamin N. Greenwood ◽  
...  

2016 ◽  
Vol 11 (1) ◽  
pp. 244-249
Author(s):  
Jacek Francikowski ◽  
Bartosz Baran ◽  
Anna Płachetka-Bożek ◽  
Michał Krzyżowski ◽  
Maria Augustyniak

AbstractIn this study, we aimed to evaluate whether exposure to caffeine in the early stages of development affect AdoR mRNA expression levels in the fruit fly (Drosophila melanogaster) and how this will relate to the developmental success of flies. Adenosine receptors are seen as the most important biochemical targets of caffeine. Simultaneously adenosine signaling orchestrates the development and growth of insects. We demonstrate that AdoR mRNA expression in D. melanogaster is persistent from early stages till imago. Strong alterations in AdoR expression were observed in larvae that had been treated with caffeine. However, after the imaginal molt, the differences in AdoR expression between the insects from all of the test groups evened out despite a wide range of developmental success in the groups. Taken together, these results suggest that caffeine affects the expression of its cellular targets even from the early stages of fruit fly development and thus there is a significantly lower larvae-to-adult survival rate. Moreover, we also proved that the expression of AdoR undergoes a peculiar reset during the maturation of D. melanogaster despite the conditions in which larvae developed.


2013 ◽  
Vol 34 (suppl 1) ◽  
pp. P3905-P3905
Author(s):  
S. Del Ry ◽  
V. Della Latta ◽  
M. Cabiati ◽  
S. Zimbone ◽  
P. E. Lazzerini ◽  
...  

2020 ◽  
Author(s):  
Adrienne N. Santiago ◽  
Emily A. Makowicz ◽  
Muzi Du ◽  
Chiye Aoki

ABSTRACTFood restriction (FR) evokes running, which may promote adaptive foraging in times of food scarcity, but can become lethal if energy expenditure exceeds caloric availability. Here, we demonstrate that chemogenetic activation of either the general medial prefrontal cortex (mPFC) pyramidal cell population, or the subpopulation projecting to dorsal striatum (DS) drives running specifically during hours preceding limited food availability, and not during ad libitum food availability. Conversely, suppression of mPFC pyramidal cells generally, or targeting mPFC-to-DS cells, reduced wheel running specifically during FR and not during ad libitum food access. Post-mortem c-Fos analysis and electron microscopy of mPFC layer 5 revealed distinguishing characteristics of mPFC-to-DS cells, when compared to neighboring non-DS projecting pyramidal cells: 1) greater recruitment of GABAergic activity and 2) less axo-somatic GABAergic innervation. Together, these attributes position the mPFC-to-DS subset of pyramidal cells to dominate mPFC excitatory outflow, particularly during FR, revealing a specific and causal role for mPFC-to-DS control of the decision to run during food scarcity. Individual differences in GABAergic activity correlate with running response to further support this interpretation. FR enhancement of PFC-to-DS activity may influence neural circuits both in studies using FR to motivate animal behavior and in human conditions hallmarked by FR.


2021 ◽  
Vol 19 ◽  
Author(s):  
Jean Lud Cadet ◽  
Subramaniam Jayanthi

: The persistence of the addiction phenotype in methamphetamine use disorder (MUD) suggests the potential presence of epigenetic changes and potential structural adaptations that may drive the manifestations of MUD in humans. In the present review, we discuss the evidence that documents the fact that methamphetamine exposure can cause changes in epigenetic modifications, including histone acetylation and methylation, as well as DNA methylation and hydroxymethylation in a complex manner that need to be fully dissected. Nevertheless, our work has demonstrated the existence of correlations between behavioral changes and epigenetic alterations during methamphetamine self-administration. We found that prolonged methamphetamine self-administration and contingent footshocks resulted in rats with compulsive drug-taking and abstinent phenotypes. In addition, rats that reduce their methamphetamine intake in the presence of punishment showed increased DNA hydroxymethylation in genes encoding potassium channels in their nucleus accumbens. Moreover, altered DNA hydroxymethylation in those genes led to an increase in their mRNA expression. Additional studies revealed decreased mRNA expression of histone deacetylases associated with increased histone acetylation and induced gene expression in the dorsal striatum. These changes were associated with a reduction in methamphetamine intake in response to contingent footshocks. More research is necessary in order to further dissect how pharmacological or genetic manipulations of identified epigenetic alterations and expression of potassium channels can impact methamphetamine-taking behaviors or relapse to methamphetamine-taking after long periods of abstinence. Investigations that use discovery approaches, such as whole-genome sequencing after chromatin immunoprecipitation, should accelerate our efforts to develop epigenetic therapeutic approaches against MUD.


Sign in / Sign up

Export Citation Format

Share Document