Nuclear export of signal recognition particle RNA in mammalian cells

2004 ◽  
Vol 313 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Christina N. Alavian ◽  
Joan C. Ritland Politz ◽  
Laura B. Lewandowski ◽  
Christine M. Powers ◽  
Thoru Pederson
2011 ◽  
Vol 22 (14) ◽  
pp. 2646-2658 ◽  
Author(s):  
Qiang Chen ◽  
Sujatha Jagannathan ◽  
David W. Reid ◽  
Tianli Zheng ◽  
Christopher V. Nicchitta

The mRNA transcriptome is currently thought to be partitioned between the cytosol and endoplasmic reticulum (ER) compartments by binary selection; mRNAs encoding cytosolic/nucleoplasmic proteins are translated on free ribosomes, and mRNAs encoding topogenic signal-bearing proteins are translated on ER-bound ribosomes, with ER localization being conferred by the signal-recognition particle pathway. In subgenomic and genomic analyses of subcellular mRNA partitioning, we report an overlapping subcellular distribution of cytosolic/nucleoplasmic and topogenic signal-encoding mRNAs, with mRNAs of both cohorts displaying noncanonical subcellular partitioning patterns. Unexpectedly, the topogenic signal-encoding mRNA transcriptome was observed to partition in a hierarchical, cohort-specific manner. mRNAs encoding resident proteins of the endomembrane system were clustered at high ER-enrichment values, whereas mRNAs encoding secretory pathway cargo were broadly represented on free and ER-bound ribosomes. Two distinct modes of mRNA association with the ER were identified. mRNAs encoding endomembrane-resident proteins were bound via direct, ribosome-independent interactions, whereas mRNAs encoding secretory cargo displayed predominantly ribosome-dependent modes of ER association. These data indicate that mRNAs are partitioned between the cytosol and ER compartments via a hierarchical system of intrinsic and encoded topogenic signals and identify mRNA cohort-restricted modes of mRNA association with the ER.


1992 ◽  
Vol 3 (8) ◽  
pp. 895-911 ◽  
Author(s):  
S C Ogg ◽  
M A Poritz ◽  
P Walter

In mammalian cells, the signal recognition particle (SRP) receptor is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (ER) membrane. We have identified the Saccharomyces cerevisiae homologue of the alpha-subunit of the SRP receptor (SR alpha) and characterized its function in vivo. S. cerevisiae SR alpha is a 69-kDa peripheral membrane protein that is 32% identical (54% chemically similar) to its mammalian homologue and, like mammalian SR alpha, is predicted to contain a GTP binding domain. Yeast cells that contain the SR alpha gene (SRP101) under control of the GAL1 promoter show impaired translocation of soluble and membrane proteins across the ER membrane after depletion of SR alpha. The degree of the translocation defect varies for different proteins. The defects are similar to those observed in SRP deficient cells. Disruption of the SRP101 gene results in an approximately sixfold reduction in the growth rate of the cells. Disruption of the gene encoding SRP RNA (SCR1) or both SCR1 and SRP101 resulted in an indistinguishable growth phenotype, indicating that SRP receptor and SRP function in the same pathway. Taken together, these results suggest that the components and the mechanism of the SRP-dependent protein targeting pathway are evolutionarily conserved yet not essential for cell growth. Surprisingly, cells that are grown for a prolonged time in the absence of SRP or SRP receptor no longer show pronounced protein translocation defects. This adaptation is a physiological process and is not due to the accumulation of a suppressor mutation. The degree of this adaptation is strain dependent.


2001 ◽  
Vol 153 (4) ◽  
pp. 745-762 ◽  
Author(s):  
Helge Grosshans ◽  
Karina Deinert ◽  
Ed Hurt ◽  
George Simos

The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP “core proteins” Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3′ end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.


2007 ◽  
Vol 6 (10) ◽  
pp. 1865-1875 ◽  
Author(s):  
Yaniv Lustig ◽  
Yaron Vagima ◽  
Hanoch Goldshmidt ◽  
Avigail Erlanger ◽  
Vered Ozeri ◽  
...  

ABSTRACT Protein translocation across the endoplasmic reticulum is mediated by the signal recognition particle (SRP). In this study, the SRP pathway in trypanosomatids was down-regulated by two approaches: RNA interference (RNAi) silencing of genes encoding SRP proteins in Trypanosoma brucei and overexpression of dominant-negative mutants of 7SL RNA in Leptomonas collosoma. The biogenesis of both signal peptide-containing proteins and polytopic membrane proteins was examined using endogenous and green fluorescent protein-fused proteins. RNAi silencing of SRP54 or SRP68 in T. brucei resulted in reduced levels of polytopic membrane proteins, but no effect on the level of signal peptide-containing proteins was observed. When SRP deficiency was achieved in L. collosoma by overexpression of dominant-negative mutated 7SL RNA, a major effect was observed on polytopic membrane proteins but not on signal peptide-containing proteins. This study included two trypanosomatid species, tested various protein substrates, and induced depletion of the SRP pathway by affecting either the levels of SRP binding proteins or that of SRP RNA. Our results demonstrate that, as in bacteria but in contrast to mammalian cells, the trypanosome SRP is mostly essential for the biogenesis of membrane proteins.


RNA Biology ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 73-83 ◽  
Author(s):  
Rob W. van Nues ◽  
Eileen Leung ◽  
James C. McDonald ◽  
Iswarya Dantuluru ◽  
Jeremy D. Brown

1994 ◽  
Vol 107 (4) ◽  
pp. 903-912 ◽  
Author(s):  
X.P. He ◽  
N. Bataille ◽  
H.M. Fried

The signal recognition particle is a cytoplasmic RNA-protein complex that mediates translocation of secretory polypeptides into the endoplasmic reticulum. We have used a Xenopus oocyte microinjection assay to determine how signal recognition particle (SRP) RNA is exported from the nucleus. Following nuclear injection, SRP RNA accumulated in the cytoplasm while cytoplasmically injected SRP RNA did not enter the nucleus. Cytoplasmic accumulation of SRP RNA was an apparently facilitated process dependent on limiting trans-acting factors, since nuclear export exhibited saturation kinetics and was completely blocked either at low temperature or by wheat germ agglutinin, a known inhibitor of nuclear pore-mediated transport. At least one target for trans-acting factors that promote nuclear export of SRP RNA appears to be the Alu element of the molecule, since a transcript consisting of only the Alu sequence was exported from the nucleus in a temperature-dependent manner and the Alu transcript competed in the nucleus for transport with intact SRP RNA. Although the identities of trans-acting factors responsible for SRP RNA transport are at present unknown, we suggest that proteins contained within the cytoplasmic form of SRP are candidates. Consistent with this idea were the effects of a mutation in SRP RNA that prevented binding of two known SRP proteins to the Alu sequence.


Sign in / Sign up

Export Citation Format

Share Document