Nuclear export of signal recognition particle RNA is a facilitated process that involves the Alu sequence domain

1994 ◽  
Vol 107 (4) ◽  
pp. 903-912 ◽  
Author(s):  
X.P. He ◽  
N. Bataille ◽  
H.M. Fried

The signal recognition particle is a cytoplasmic RNA-protein complex that mediates translocation of secretory polypeptides into the endoplasmic reticulum. We have used a Xenopus oocyte microinjection assay to determine how signal recognition particle (SRP) RNA is exported from the nucleus. Following nuclear injection, SRP RNA accumulated in the cytoplasm while cytoplasmically injected SRP RNA did not enter the nucleus. Cytoplasmic accumulation of SRP RNA was an apparently facilitated process dependent on limiting trans-acting factors, since nuclear export exhibited saturation kinetics and was completely blocked either at low temperature or by wheat germ agglutinin, a known inhibitor of nuclear pore-mediated transport. At least one target for trans-acting factors that promote nuclear export of SRP RNA appears to be the Alu element of the molecule, since a transcript consisting of only the Alu sequence was exported from the nucleus in a temperature-dependent manner and the Alu transcript competed in the nucleus for transport with intact SRP RNA. Although the identities of trans-acting factors responsible for SRP RNA transport are at present unknown, we suggest that proteins contained within the cytoplasmic form of SRP are candidates. Consistent with this idea were the effects of a mutation in SRP RNA that prevented binding of two known SRP proteins to the Alu sequence.

2001 ◽  
Vol 153 (4) ◽  
pp. 745-762 ◽  
Author(s):  
Helge Grosshans ◽  
Karina Deinert ◽  
Ed Hurt ◽  
George Simos

The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP “core proteins” Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3′ end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.


2001 ◽  
Vol 114 (19) ◽  
pp. 3479-3485 ◽  
Author(s):  
Kellie A. Dean ◽  
Oliver von Ahsen ◽  
Dirk Görlich ◽  
Howard M. Fried

The signal recognition particle (SRP) is a cytoplasmic RNA-protein complex that targets proteins to the rough endoplasmic reticulum. Although SRP functions in the cytoplasm, RNA microinjection and cDNA transfection experiments in animal cells, as well as genetic analyses in yeast, have indicated that SRP assembles in the nucleus. Nonetheless, the mechanisms responsible for nuclear-cytoplasmic transport of SRP RNA and SRP proteins are largely unknown. Here we show that the 19 kDa protein subunit of mammalian SRP, SRP19, was efficiently imported into the nucleus in vitro by two members of the importin β superfamily of transport receptors, importin 8 and transportin; SRP19 was also imported less efficiently by several other members of the importin β family. Although transportin is known to import a variety of proteins, SRP19 import is the first function assigned to importin 8. Furthermore, we show that a significant pool of endogenous SRP19 is located in the nucleus, as well as the nucleolus. Our results show that at least one mammalian SRP protein is specifically imported into the nucleus, by members of the importin β family of transport receptors, and the findings add additional evidence for nuclear assembly of SRP.


2004 ◽  
Vol 313 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Christina N. Alavian ◽  
Joan C. Ritland Politz ◽  
Laura B. Lewandowski ◽  
Christine M. Powers ◽  
Thoru Pederson

Science ◽  
2014 ◽  
Vol 344 (6179) ◽  
pp. 101-104 ◽  
Author(s):  
Jan Timo Grotwinkel ◽  
Klemens Wild ◽  
Bernd Segnitz ◽  
Irmgard Sinning

The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
André Plagens ◽  
Michael Daume ◽  
Julia Wiegel ◽  
Lennart Randau

Signal recognition particles (SRPs) are universal ribonucleoprotein complexes found in all three domains of life that direct the cellular traffic and secretion of proteins. These complexes consist of SRP proteins and a single, highly structured SRP RNA. Canonical SRP RNA genes have not been identified for some Thermoproteus species even though they contain SRP19 and SRP54 proteins. Here, we show that genome rearrangement events in Thermoproteus tenax created a permuted SRP RNA gene. The 5'- and 3'-termini of this SRP RNA are located close to a functionally important loop present in all known SRP RNAs. RNA-Seq analyses revealed that these termini are ligated together to generate circular SRP RNA molecules that can bind to SRP19 and SRP54. The circularization site is processed by the tRNA splicing endonuclease. This moonlighting activity of the tRNA splicing machinery permits the permutation of the SRP RNA and creates highly stable and functional circular RNA molecules.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1161-C1161
Author(s):  
Irmgard Sinning

More than 25% of the cellular proteome comprise membrane proteins that have to be inserted into the correct target membrane. Most membrane proteins are delivered to the membrane by the signal recognition particle (SRP) pathway which relies on the recognition of an N-terminal signal sequence. In contrast to this co-translational mechanism, which avoids problems due to the hydrophobic nature of the cargo proteins, tail-anchored (TA) membrane proteins utilize a post-translational mechanism for membrane insertion – the GET pathway (guided entry of tail-anchored membrane proteins). The SRP and GET pathways are both regulated by GTP and ATP binding proteins of the SIMIBI family. However, in the SRP pathway the SRP RNA plays a unique regulatory role. Recent insights into eukaryotic SRP will be discussed.


2006 ◽  
Vol 189 (1) ◽  
pp. 276-279 ◽  
Author(s):  
Sophie Yurist ◽  
Idit Dahan ◽  
Jerry Eichler

ABSTRACT In vitro, archaeal SRP54 binds SRP RNA in the absence of SRP19, suggesting the latter to be expendable in Archaea. Accordingly, the Haloferax volcanii SRP19 gene was deleted. Although normally transcribed at a level comparable to that of the essential SRP54 gene, SRP19 deletion had no effect on cell growth, membrane protein insertion, protein secretion, or ribosome levels. The absence of SRP19 did, however, increase membrane bacterioruberin levels.


2002 ◽  
Vol 9 (6) ◽  
pp. 1251-1261 ◽  
Author(s):  
Chris Oubridge ◽  
Andreas Kuglstatter ◽  
Luca Jovine ◽  
Kiyoshi Nagai

2008 ◽  
Vol 415 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Tuhin Subhra Maity ◽  
Howard M. Fried ◽  
Kevin M. Weeks

The mammalian SRP (signal recognition particle) represents an important model for the assembly and role of inter-domain interactions in complex RNPs (ribonucleoproteins). In the present study we analysed the interdependent interactions between the SRP19, SRP68 and SRP72 proteins and the SRP RNA. SRP72 binds the SRP RNA largely via non-specific electrostatic interactions and enhances the affinity of SRP68 for the RNA. SRP19 and SRP68 both bind directly and specifically to the same two RNA helices, but on opposite faces and at opposite ends. SRP19 binds at the apices of helices 6 and 8, whereas the SRP68/72 heterodimer binds at the three-way junction involving RNA helices 5, 6 and 8. Even though both SRP19 and SRP68/72 stabilize a similar parallel orientation for RNA helices 6 and 8, these two proteins bind to the RNA with moderate anti-cooperativity. Long-range anti-cooperative binding by SRP19 and SRP68/72 appears to arise from stabilization of distinct conformations in the stiff intervening RNA scaffold. Assembly of large RNPs is generally thought to involve either co-operative or energetically neutral interactions among components. By contrast, our findings emphasize that antagonistic interactions can play significant roles in assembly of multi-subunit RNPs.


Sign in / Sign up

Export Citation Format

Share Document