The biochemical activation of T-type Ca2+ channels in HEK293 cells stably expressing α1G and Kir2.1 subunits

2004 ◽  
Vol 324 (1) ◽  
pp. 401-408 ◽  
Author(s):  
Taehyun Kim ◽  
Juhyun Choi ◽  
Sunoh Kim ◽  
Ohyeun Kwon ◽  
Seung-Yeol Nah ◽  
...  
2015 ◽  
Vol 4 (Suppl. 1) ◽  
pp. 21-29 ◽  
Author(s):  
Juliane Dinter ◽  
Noushafarin Khajavi ◽  
Jessica Mühlhaus ◽  
Carolin Leonie Wienchol ◽  
Maxi Cöster ◽  
...  

Background: 3-Iodothyronamine (3-T1AM), a signaling molecule with structural similarities to thyroid hormones, induces numerous physiological responses including reversible body temperature decline. One target of 3-T1AM is the trace amine-associated receptor 1 (TAAR1), which is a member of the rhodopsin-like family of G protein-coupled receptors (GPCRs). Interestingly, the effects of 3-T1AM remain detectable in TAAR1 knockout mice, suggesting further targets for 3-T1AM such as adrenergic receptors. Therefore, we evaluated whether β-adrenergic receptor 1 (ADRB1) and 2 (ADRB2) signaling is affected by 3-T1AM in HEK293 cells and in human conjunctival epithelial cells (IOBA-NHC), where these receptors are highly expressed endogenously. Methods: A label-free EPIC system for prescreening the 3-T1AM-induced effects on ADRB1 and ADRB2 in transfected HEK293 cells was used. In addition, ADRB1 and ADRB2 activation was analyzed using a cyclic AMP assay and a MAPK reporter gene assay. Finally, fluorescence Ca2+ imaging was utilized to delineate 3-T1AM-induced Ca2+ signaling. Results: 3-T1AM (10-5- 10-10M) enhanced isoprenaline-induced ADRB2-mediated Gs signaling but not that of ADRB1-mediated signaling. MAPK signaling remained unaffected for both receptors. In IOBA-NHC cells, norepinephrine-induced Ca2+ influxes were blocked by the nonselective ADRB blocker timolol (10 µM), indicating that ADRBs are most likely linked with Ca2+ channels. Notably, timolol was also found to block 3-T1AM (10-5M)-induced Ca2+ influx. Conclusions: The presented data support that 3-T1AM directly modulates β-adrenergic receptor signaling. The relationship between 3-T1AM and β-adrenergic signaling also reveals a potential therapeutic value for suppressing Ca2+ channel-mediated inflammation processes, occurring in eye diseases such as conjunctivitis.


2020 ◽  
Vol 4 (5) ◽  
Author(s):  
Teresa Zariñán ◽  
Viktor Y Butnev ◽  
Rubén Gutiérrez-Sagal ◽  
José Luis Maravillas-Montero ◽  
Iván Martínez-Luis ◽  
...  

Abstract FSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.


Function ◽  
2021 ◽  
Author(s):  
Pulak Kar ◽  
Pradeep Barak ◽  
Anna Zerio ◽  
Yu-Ping Lin ◽  
Amy J Parekh ◽  
...  

Abstract To avoid conflicting and deleterious outcomes, eukaryotic cells often confine signalling molecules to spatially restricted sub-compartments. The smallest signalling unit is the Ca2+ nanodomain, forming near open Ca2+ channels. Ca2+ nanodomains near store-operated Orai1 channels stimulate calcineurin, which activates the transcription factor NFAT1, and both enzyme and target are initially attached to the plasma membrane through the scaffolding protein AKAP79. Here we show that a cAMP signalling nexus also forms adjacent to Orai1. Protein kinase A and phosphodiesterase 4, an enzyme that rapidly breaks down cAMP, both associate with AKAP79 and realign close to Orai1 after stimulation. PCR and mass spectrometry failed to show expression of Ca2+-activated adenylyl cyclase 8 in HEK293 cells, whereas the enzyme was observed in neuronal cell lines. FRET and biochemical measurements of bulk cAMP and protein kinase A activity consistently failed to show an increase in adenylyl cyclase activity following even a large rise in cytosolic Ca2+. Furthermore, expression of AKAP79-CUTie, a cAMP FRET sensor tethered to AKAP79, did not report a rise in cAMP after stimulation, despite AKAP79 association with Orai1. Hence HEK293 cells do not express functionally active Ca2+-activated adenylyl cyclases including adenylyl cyclase 8. Our results show that two ancient second messengers are independently generated in nanodomains close to Orai1 Ca2+ channels.


2005 ◽  
Vol 1045 (1-2) ◽  
pp. 116-123 ◽  
Author(s):  
Shuang-Qing Peng ◽  
Ravindra K. Hajela ◽  
William D. Atchison
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document