In vitro transcription termination activity of the Drosophila mitochondrial DNA-binding protein DmTTF

2005 ◽  
Vol 331 (1) ◽  
pp. 357-362 ◽  
Author(s):  
Marina Roberti ◽  
Patricio Fernandez-Silva ◽  
Paola Loguercio Polosa ◽  
Erika Fernandez-Vizarra ◽  
Francesco Bruni ◽  
...  
1990 ◽  
Vol 10 (6) ◽  
pp. 2793-2800 ◽  
Author(s):  
B McStay ◽  
R H Reeder

We describe a partially fractionated in vitro transcription system from Xenopus laevis for the assay of transcription termination by RNA polymerase I. Termination in vitro was found to require a specific terminator sequence in the DNA and a DNA-binding protein fraction that produces a footprint over the terminator sequence.


1985 ◽  
Vol 100 (1) ◽  
pp. 258-264 ◽  
Author(s):  
P A Pavco ◽  
G C Van Tuyle

The mitochondrial DNA-binding protein P16 was isolated from rat liver mitochondrial lysates by affinity chromatography on single strand DNA agarose and separated from DNA in the preparation by alkaline CsCl isopycnic gradients. The top fraction of the gradients contained a single polypeptide species (Mr approximately equal to 15,200) based upon SDS PAGE. Digestion of single strand DNA-bound P16 with proteinase K produced a protease-insensitive, DNA-binding fragment (Mr approximately equal to 6,000) that has been purified by essentially the same procedures used for intact P16. The partial amino acid compositions for P16 and the DNA-binding fragment were obtained by conventional methods. Analysis of subcellular fractions revealed that nearly all of the cellular P16 was located in the mitochondria and that only trace amounts of protein of comparable electrophoretic mobility could be isolated from the nuclear or cytoplasmic fractions. The labeling of P16 with [35S]methionine in primary rat hepatocyte cultures was inhibited by more than 90% by the cytoplasmic translation inhibitor cycloheximide, but unaffected by the mitochondrial-specific agent chloramphenicol. These results indicate that P16 is synthesized on cytoplasmic ribosomes and imported into the mitochondria. The addition of purified P16 to deproteinized mitochondrial DNA resulted in the complete protection of the labeled nascent strands of displacement loops against branch migrational loss during cleavage of parental DNA with SstI, thus providing strong evidence that P16 is the single entity required for this in vitro function. Incubation of P16 with single strand phi X174 DNA, double strand (RF) phi X174 DNA, or Escherichia coli ribosomal RNA and subsequent analysis of the nucleic acid species for bound protein indicated a strong preference of P16 for single strand DNA and no detectable affinity for RNA or double strand DNA. Examination of P16-single strand phi X174 DNA complexes by direct electron microscopy revealed thickened, irregular fibers characteristic of protein-associated single strand DNA.


1990 ◽  
Vol 10 (6) ◽  
pp. 2793-2800
Author(s):  
B McStay ◽  
R H Reeder

We describe a partially fractionated in vitro transcription system from Xenopus laevis for the assay of transcription termination by RNA polymerase I. Termination in vitro was found to require a specific terminator sequence in the DNA and a DNA-binding protein fraction that produces a footprint over the terminator sequence.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Antoine Hocher ◽  
Maria Rojec ◽  
Jacob B Swadling ◽  
Alexander Esin ◽  
Tobias Warnecke

Histones are a principal constituent of chromatin in eukaryotes and fundamental to our understanding of eukaryotic gene regulation. In archaea, histones are widespread but not universal: several lineages have lost histone genes. What prompted or facilitated these losses and how archaea without histones organize their chromatin remains largely unknown. Here, we elucidate primary chromatin architecture in an archaeon without histones, Thermoplasma acidophilum, which harbors a HU family protein (HTa) that protects part of the genome from micrococcal nuclease digestion. Charting HTa-based chromatin architecture in vitro, in vivo and in an HTa-expressing E. coli strain, we present evidence that HTa is an archaeal histone analog. HTa preferentially binds to GC-rich sequences, exhibits invariant positioning throughout the growth cycle, and shows archaeal histone-like oligomerization behavior. Our results suggest that HTa, a DNA-binding protein of bacterial origin, has converged onto an architectural role filled by histones in other archaea.


Sign in / Sign up

Export Citation Format

Share Document