scholarly journals A DNA-binding protein is required for termination of transcription by RNA polymerase I in Xenopus laevis.

1990 ◽  
Vol 10 (6) ◽  
pp. 2793-2800 ◽  
Author(s):  
B McStay ◽  
R H Reeder

We describe a partially fractionated in vitro transcription system from Xenopus laevis for the assay of transcription termination by RNA polymerase I. Termination in vitro was found to require a specific terminator sequence in the DNA and a DNA-binding protein fraction that produces a footprint over the terminator sequence.

1990 ◽  
Vol 10 (6) ◽  
pp. 2793-2800
Author(s):  
B McStay ◽  
R H Reeder

We describe a partially fractionated in vitro transcription system from Xenopus laevis for the assay of transcription termination by RNA polymerase I. Termination in vitro was found to require a specific terminator sequence in the DNA and a DNA-binding protein fraction that produces a footprint over the terminator sequence.


2005 ◽  
Vol 331 (1) ◽  
pp. 357-362 ◽  
Author(s):  
Marina Roberti ◽  
Patricio Fernandez-Silva ◽  
Paola Loguercio Polosa ◽  
Erika Fernandez-Vizarra ◽  
Francesco Bruni ◽  
...  

1995 ◽  
Vol 8 (2) ◽  
pp. 295-298 ◽  
Author(s):  
Hao Fan ◽  
Kimitaka Yakura ◽  
Masako Miyanishi ◽  
Mamoru Sugita ◽  
Masahiro Sugiura

1985 ◽  
Vol 5 (6) ◽  
pp. 1358-1369
Author(s):  
R M Learned ◽  
S Cordes ◽  
R Tjian

A whole-cell HeLa extract was fractionated into two components required for accurate in vitro transcription of human rRNA. One fraction contained endogenous RNA polymerase I, and the second component contained a factor (SL1) that confers promoter selectivity to RNA polymerase I. Analysis of mutant templates suggests that the core control element of the rRNA promoter is required for activation of transcription by SL1. We purified SL1 approximately 100,000-fold by column chromatography and have shown that the addition of SL1 can reprogram the otherwise nonpermissive mouse transcription system to recognize and initiate accurate RNA synthesis from human rDNA. Antibodies raised against SL1 bind preferentially to a protein localized in the nucleolus of primate cells and specifically inhibit in vitro transcription initiating from the human rRNA promoter. By contrast, anti-SL1 does not react with the nucleolus of rodent cells and has no effect on the in vitro synthesis of mouse rRNA by a transcription system derived from mouse cells. These findings suggest that SL1 is a selectivity factor present in the nucleolus that imparts promoter recognition to RNA polymerase I and that can discriminate between rRNA promoters from different species.


1990 ◽  
Vol 10 (4) ◽  
pp. 1743-1753 ◽  
Author(s):  
H Wang ◽  
P R Nicholson ◽  
D J Stillman

A DNA-binding protein has been identified from extracts of the budding yeast Saccharomyces cerevisiae which binds to sites present in the promoter regions of a number of yeast genes transcribed by RNA polymerase II, including SIN3 (also known as SDI1), SWI5, CDC9, and TOP1. This protein also binds to a site present in the enhancer for the 35S rRNA gene, which is transcribed by RNA polymerase I, and appears to be identical to the previously described REB1 protein (B. E. Morrow, S. P. Johnson, and J. R. Warner, J. Biol. Chem. 264:9061-9068, 1989). When oligonucleotides containing a REB1-binding site are placed between the CYC1 upstream activating sequence and TATA box, transcription by RNA polymerase II in vivo is substantially reduced, suggesting that REB1 acts as a repressor of RNA polymerase II transcription. The in vitro levels of the REB1 DNA-binding activity are reduced in extracts prepared from strains bearing a mutation in the SIN3 gene. A greater reduction in REB1 activity is observed if the sin3 mutant strain is grown in media containing galactose as a carbon source.


Sign in / Sign up

Export Citation Format

Share Document