Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta

2005 ◽  
Vol 338 (2) ◽  
pp. 717-722 ◽  
Author(s):  
R. Brodzik ◽  
K. Bandurska ◽  
D. Deka ◽  
M. Golovkin ◽  
H. Koprowski
2014 ◽  
Vol 27 (10) ◽  
pp. 1107-1118 ◽  
Author(s):  
Muthukumar Balasubramaniam ◽  
Bong-Suk Kim ◽  
Heather M. Hutchens-Williams ◽  
L. Sue Loesch-Fries

Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.


2002 ◽  
Vol 127 (4) ◽  
pp. 515-519 ◽  
Author(s):  
Kisung Ko ◽  
John L. Norelli ◽  
Jean-Paul Reynoird ◽  
Herb S. Aldwinckle ◽  
Susan K. Brown

Genes encoding lysozyme (T4L) from T4 bacteriophage and attacin E (attE) from Hyalophora cecropia were used, either singly or in combination, to construct plant binary vectors, pLDB15, p35SAMVT4, and pPin2Att35SAMVT4, respectively, for Agrobacterium-mediated transformation of `Galaxy' apple, to enhance resistance to Erwinia amylovora. In these plasmids, the T4L gene was controlled by the cauliflower mosaic virus 35S promoter with duplicated upstream domain and the untranslated leader sequence of alfalfa mosaic virus RNA 4, and the attE gene was controlled by the potato proteinase inhibitor II (Pin2) promoter. All transgenic lines were screened by polymerase chain reaction (PCR) for T4L and attE genes, and a double-antibody sandwich enzyme-linked immunosorbent assay for neomycin phosphotransferase II. Amplification of T4L and attE genes was observed in reverse transcriptase-PCR, indicating that these genes were transcribed in all tested transgenic lines containing each gene. The attacin protein was detected in all attE transgenic lines. The expression of attE under the Pin2 promoter was constitutive but higher levels of expression were observed after mechanical wounding. Some T4L or attE transgenic lines had significant disease reduction compared to nontransgenic `Galaxy'. However, transgenic lines containing both attE and T4L genes were not significantly more resistant than nontransgenic `Galaxy', indicating that there was no in planta synergy between attE and T4L with respect to resistance to E. amylovora.


1998 ◽  
Vol 11 (7) ◽  
pp. 618-625 ◽  
Author(s):  
Emmanuelle Lauber ◽  
Claudine Bleykasten-Grosshans ◽  
M. Erhardt ◽  
S. Bouzoubaa ◽  
G. Jonard ◽  
...  

Cell-to-cell movement of beet necrotic yellow vein virus (BNYVV) requires three proteins encoded by a triple gene block (TGB) on viral RNA 2. A BNYVV RNA 3-derived replicon was used to express movement proteins of other viruses and the ability of these proteins to functionally substitute for the BNYVV TGB proteins was tested by coinoculation of TGB-defective BNYVV with the various replicons to Chenopodium quinoa. Trans-heterocomplementation was successful with the movement protein (P30) of tobacco mosaic virus but not with the tubule-forming movement proteins of alfalfa mosaic virus and grapevine fanleaf virus. Trans-complementation of BNYVV movement was also observed when all three TGB proteins of the distantly related peanut clump virus were supplied together but not when they were substituted for their BNYVV counterparts one by one. When P30 was used to drive BNYVV movement in trans, accumulation of the first TGB protein of BNYVV was adversely affected by null mutations in the second and third TGB proteins. Taken together, these results suggest that highly specific interactions among cognate TGB proteins are important for their function and/or stability in planta.


Author(s):  
P.B. Teh

AMV was shown to be transmitted by sap, aphids and through lucerne seed, but not by Cuscuta. Virus source and test plant influenced transmission frequency. Sap-inoculation tests showed that 20 species of plants were susceptible to this virus. Thirteen species of plants from the fields where AMV had been detected were tested but only three were found to be infected with the virus.


2006 ◽  
Vol 96 (11) ◽  
pp. 1237-1242 ◽  
Author(s):  
H. Xu ◽  
J. Nie

Alfalfa mosaic virus (AMV) was detected in potato fields in several provinces in Canada and characterized by bioassay, enzyme-linked immunosorbent assay, and reverse-transcription polymerase chain reaction (RT-PCR). The identity of eight Canadian potato AMV isolates was confirmed by sequence analysis of their coat protein (CP) gene. Sequence and phylogenetic analysis indicated that these eight AMV potato isolates fell into one strain group, whereas a slight difference between Ca175 and the other Canadian AMV isolates was revealed. The Canadian AMV isolates, except Ca175, clustered together among other strains based on alignment of the CP gene sequence. To detect the virus, a pair of primers, AMV-F and AMV-R, specific to the AMV CP gene, was designed based on the nucleotide sequence alignment of known AMV strains. Evaluations showed that RT-PCR using this primer set was specific and sensitive for detecting AMV in potato leaf and tuber samples. AMV RNAs were easily detected in composite samples of 400 to 800 potato leaves or 200 to 400 tubers. Restriction analysis of PCR amplicons with SacI was a simple method for the confirmation of PCR tests. Thus, RT-PCR followed by restriction fragment length polymorphism analysis may be a useful approach for screening potato samples on a large scale for the presence of AMV.


2018 ◽  
Vol 100 (3) ◽  
pp. 607-607 ◽  
Author(s):  
Pal Salamon ◽  
Anita Sos-Hegedus ◽  
Peter Gyula ◽  
Gyorgy Szittya

FEBS Letters ◽  
1980 ◽  
Vol 109 (1) ◽  
pp. 145-150 ◽  
Author(s):  
Madeline R. Gunn ◽  
Robert H. Symons

Sign in / Sign up

Export Citation Format

Share Document