The basic helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates Twist1 through an E-box element

2014 ◽  
Vol 455 (3-4) ◽  
pp. 390-395 ◽  
Author(s):  
Masatoshi Suzuki ◽  
Fuyuki Sato ◽  
Ujjal K. Bhawal
2005 ◽  
Vol 19 (9) ◽  
pp. 2245-2257 ◽  
Author(s):  
Cheol Yi Hong ◽  
Eun-Yeung Gong ◽  
Kabsun Kim ◽  
Ji Ho Suh ◽  
Hyun-Mi Ko ◽  
...  

Abstract Androgen receptor (AR) is important in male sexual differentiation and testicular function. Here, we demonstrate the regulation of AR expression and its transactivation by the basic helix-loop-helix (bHLH) transcription factor Pod-1, the expression of which in postnatal testis reciprocally coincides with the expression of AR. Pod-1 represses the promoter activity of AR, possibly through its E-box. An AR promoter region of 169 bp, which harbors one canonical E-box, is sufficient for the Pod-1-repression and bound by purified Pod-1 proteins. Pod-1 also suppresses the transactivation of AR. Transient transfection analyses of mammalian cells show that Pod-1 represses AR transactivation in a dose-dependent manner. Furthermore, yeast two-hybrid, glutathione-S-transferase-pull-down, and coimmunoprecipitation analyses reveal that Pod-1 directly associates with AR through its N-terminal region and through the DNA binding-hinge domain of AR. Interestingly, Pod-1 recruits histone deacetylase (HDAC)-1 to inhibit both promoter activity and transactivation of AR. Overexpression of HDAC1 further inhibits the Pod-1-mediated repressions and Pod-1 directly interacts with HDAC1. Furthermore, chromatin immunoprecipitation assay reveals that HDAC1 is recruited with Pod-1 to the endogenous AR promoter and the androgen-regulated Pem promoter. Taken together, these results suggest that Pod-1, which controls AR transcription and function, may play an important role in the development and function of the testis.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2513-2523 ◽  
Author(s):  
J.C. Cross ◽  
M.L. Flannery ◽  
M.A. Blanar ◽  
E. Steingrimsson ◽  
N.A. Jenkins ◽  
...  

Trophoblast cells are the first lineage to form in the mammalian conceptus and mediate the process of implantation. We report the cloning of a basic helix-loop-helix (bHLH) transcription factor gene, Hxt, that is expressed in early trophoblast and in differentiated giant cells. A separate gene, Hed, encodes a related protein that is expressed in maternal deciduum surrounding the implantation site. Overexpression of Hxt in mouse blastomeres directed their development into trophoblast cells in blastocysts. In addition, overexpression of Hxt induced the differentiation of rat trophoblast (Rcho-1) stem cells as assayed by changes in cell adhesion and by activation of the placental lactogen-I gene promoter, a trophoblast giant cell-specific gene. In contrast, the negative HLH regulator, Id-1, inhibited Rcho-1 differentiation and placental lactogen-I transcription. These data demonstrate a role for HLH factors in regulating trophoblast development and indicate a positive role for Hxt in promoting the formation of trophoblast giant cells.


2021 ◽  
Vol 22 (13) ◽  
pp. 7152
Author(s):  
Yaqi Hao ◽  
Xiumei Zong ◽  
Pan Ren ◽  
Yuqi Qian ◽  
Aigen Fu

The basic helix-loop-helix (bHLH) transcription factor family is one of the largest transcription factor gene families in Arabidopsis thaliana, and contains a bHLH motif that is highly conserved throughout eukaryotic organisms. Members of this family have two conserved motifs, a basic DNA binding region and a helix-loop-helix (HLH) region. These proteins containing bHLH domain usually act as homo- or heterodimers to regulate the expression of their target genes, which are involved in many physiological processes and have a broad range of functions in biosynthesis, metabolism and transduction of plant hormones. Although there are a number of articles on different aspects to provide detailed information on this family in plants, an overall summary is not available. In this review, we summarize various aspects of related studies that provide an overview of insights into the pleiotropic regulatory roles of these transcription factors in plant growth and development, stress response, biochemical functions and the web of signaling networks. We then provide an overview of the functional profile of the bHLH family and the regulatory mechanisms of other proteins.


1992 ◽  
Vol 12 (8) ◽  
pp. 3449-3459
Author(s):  
A L Nielsen ◽  
N Pallisgaard ◽  
F S Pedersen ◽  
P Jørgensen

The enhancer region of Akv murine leukemia virus contains the sequence motif ACAGATGG. This sequence is homologous to the E-box motif originally defined as a regulatory element in the enhancers of immunoglobulin mu and kappa genes. We have used double-stranded oligonucleotide probes, corresponding to the E box of the murine leukemia virus Akv, to screen a randomly primed lambda gt11 cDNA expression library made from mouse NIH 3T3 fibroblast RNA. We have identified seven lambda clones expressing DNA-binding proteins representing two different genes termed ALF1 and ALF2. The results of sequencing ALF2 cDNA suggests that we have recovered the gene for the basic-helix-loop-helix transcription factor A1, the murine analog of the human transcription factor E47. The cDNA sequence of ALF1 codes for a new member of the basic-helix-loop-helix protein family. Two splice variants of ALF1 cDNA have been found, differing by a 72-bp insertion, coding for putative proteins of 682 and 706 amino acids. The two ALF1 mRNAs are expressed at various levels in mouse tissues. In vitro DNA binding assays, using prokaryotically expressed ALF1 proteins, demonstrated specific binding of the ALF1 proteins to the Akv murine leukemia virus E-box motif ACAGATGG. Expression in NIH 3T3 fibroblasts of GAL4-ALF1 chimeric protein stimulated expression from a minimal promoter linked to a GAL4 binding site, indicating the existence of a transcriptional activator domain in ALF1.


2000 ◽  
Vol 20 (2) ◽  
pp. 530-541 ◽  
Author(s):  
Ian C. Scott ◽  
Lynn Anson-Cartwright ◽  
Paul Riley ◽  
Danny Reda ◽  
James C. Cross

ABSTRACT The basic helix-loop-helix (bHLH) transcription factor genesHand1 and Mash2 are essential for placental development in mice. Hand1 promotes differentiation of trophoblast giant cells, whereas Mash2 is required for the maintenance of giant cell precursors, and its overexpression prevents giant cell differentiation. We found that Hand1 expression and Mash2 expression overlap in the ectoplacental cone and spongiotrophoblast, layers of the placenta that contain the giant cell precursors, indicating that the antagonistic activities ofHand1 and Mash2 must be coordinated. MASH2 and HAND1 both heterodimerize with E factors, bHLH proteins that are the DNA-binding partners for most class B bHLH factors and which are also expressed in the ectoplacental cone and spongiotrophoblast. In vitro, HAND1 could antagonize MASH2 function by competing for E-factor binding. However, the Hand1 mutant phenotype cannot be solely explained by ectopic activity of MASH2, as the Hand1mutant phenotype was not altered by further mutation ofMash2. Interestingly, expression of E-factor genes (ITF2 and ALF1) was down-regulated in the trophoblast lineage prior to giant cell differentiation. Therefore, suppression of MASH2 function, required to allow giant cell differentiation, may occur in vivo by loss of its E-factor partner due to loss of its expression and/or competition from HAND1. In giant cells, where E-factor expression was not detected, HAND1 presumably associates with a different bHLH partner. This may account for the distinct functions of HAND1 in giant cells and their precursors. We conclude that development of the trophoblast lineage is regulated by the interacting functions of HAND1, MASH2, and their cofactors.


Sign in / Sign up

Export Citation Format

Share Document