P2Y12 receptor antagonists and AR receptor agonists regulates Protein Disulfide Isomerase secretion from platelets and endothelial cells

2020 ◽  
Vol 526 (3) ◽  
pp. 756-763
Author(s):  
Marcin Popielarski ◽  
Halszka Ponamarczuk ◽  
Marta Stasiak ◽  
Anna Gdula ◽  
Radoslaw Bednarek ◽  
...  
Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Denise C Fernandes ◽  
Celio X Santos ◽  
Hanjoong Jo ◽  
Francisco R Laurindo

While anti-atherogenic effects of sustained laminar shear (LS) involve NO release from eNOS, increases in LS trigger transient superoxide production via NADPH oxidase. Recently, we showed that NADPH oxidase undergoes thiol-dependent regulation by the thioredoxin superfamily chaperone Protein Disulfide Isomerase (PDI). PDI is known to promote NO internalization via trans-nitrosation reactions. We hypothesized that PDI-dependent support of NADPH oxidase activity affects NO output during sustained LS. Cultured rabbit aortic endothelial cells (RAEC) submitted to LS (15 dynes/cm 2 ) in a cone-plate system for 18h exhibited (vs. static controls): Decreased (~50%) superoxide production (HPLC analysis of DHE oxidation); Decreased (~20%) NADPH-triggered hydrogen peroxide production in membrane fraction (Amplex Red assay); Decreased mRNA expression of Nox1 (67%) and Nox4 (45%) (real-time QPCR); Increased eNOS expression (~50%, western blot) and nitrite levels in culture medium (Δ = 7.1±2.5[SD] μM, NO Analyzer and Griess reaction); Decrease in total and membrane fraction PDI protein expression (~20%) without changes in membrane fraction/total ratio of PDI. RAEC were transfected with c-myc -tagged plasmid coding for wild-type (WT) PDI or PDI mutated in 4 thioredoxin-motif cysteine residues. Forced expression (2-fold) of mutated but not WT PDI led to increase in nitrite output after LS (18h) (Δmutated = 17.2±3.3 μM vs. ΔWT = 7.0±1.9 μM, n=3, p<0.02). Confocal microscopy indicated similar subcellular localization between WT and mutated PDI. PDI co-imunoprecipitated with p22phox NADPH oxidase subunit, but not with eNOS or caveolin-1, either in static condition or after LS. Fractionation studies in sucrose gradients showed that PDI is distributed throughout several fractions in static conditions, including caveolin-1-enriched fractions, but migrates to higher-density fractions, not containing caveolin-1, during sustained LS. These results suggest that PDI is involved in regulation of NO output during LS via its effects on NADPH oxidase activity.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 691-691 ◽  
Author(s):  
Reema Jasuja ◽  
Jaehyung Cho ◽  
Bruce Furie ◽  
Barbara Furie

Abstract We have previously reported that protein disulfide isomerase is required in wild-type mice for platelet thrombus formation and fibrin generation in an in vivo laser injury model of thrombosis (Cho et al. J. Clin. Invest., 2008; 118:1123–31). Fibrin deposition after laser injury to the vessel wall in Par4−/− mice, lacking the G protein-coupled platelet thrombin receptor, is independent of platelets or requires minimal platelet activation or accumulation (Vandendries et al. Proc. Natl. Acad. Sci., 2007; 104:288–92). However, protein disulfide isomerase inhibitors have a dramatic effect on fibrin accumulation in Par4− mice, suggesting that these inhibitors may function by a platelet independent mechanism. Here, we compare the contributions of endothelium and platelet-derived protein disulfide isomerase to fibrin generation in the mouse laser injury model of thrombosis. In vitro studies using cultured human umbilical vein endothelial cells and human aortic endothelial cells show that protein disulfide isomerase can be secreted rapidly into the culture medium from these cells upon thrombin stimulation. Using intravital microscopy, we observe that protein disulfide isomerase is not detectable on the vessel wall prior to laser injury but can be detected on the injured cremaster arteriolar wall and in the developing thrombus very rapidly after laser induced injury in the live mouse. The median integrated fluorescence intensity for protein disulfide isomerase in wild-type mice was compared to wild-type mice injected with 10ug/g mouse of Integrilin, an inhibitor of platelet activation and platelet thrombus formation, and thus, an inhibitor of the contribution of platelet derived protein disulfide isomerase to thrombus formation. Protein disulfide isomerase expression was similar in both treated and untreated animals upto 30 seconds post-laser injury. After 30 seconds, the expression of protein disulfide isomerase in integrilin treated mice was significantly decreased compared to that in untreated mice, indicating that the initial protein disulfide isomerase was derived from the endothelium and later additional protein disulfide isomerase was derived from the platelets following their accumulation in the developing thrombus. Fibrin deposition, a measure of thrombin generation was comparable in wild-type mice that had been treated with Integrilin or treated with a control buffer, suggesting that endothelial-derived protein disulfide isomerase was sufficient for fibrin generation. The rate and amount of fibrin generation was indistinguishable in both groups. Furthermore, inhibition of the protein disulfide isomerase with the function blocking monoclonal antibody RL-90 (3ug/g mouse) eliminated any fibrin deposition in wild-type mice that had been treated with Integrilin. Taken together, these data indicate that endothelium-derived protein disulfide isomerase is necessary to support fibrin deposition in vivo in our laser injury model of thrombus formation. The initial protein disulfide isomerase expressed at the site of injury is derived from endothelial cells but platelets activated at the site of thrombus formation contribute, amplify and sustain protein disulfide isomerase expression.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 999-999
Author(s):  
Christopher Vega ◽  
Gregory N. Prado ◽  
Philip Asamoah ◽  
Patricia Neuman ◽  
Jose R Romero ◽  
...  

Abstract Abstract 999 Endothelin-1 (ET-1), erythrocyte sickling and endothelial cell activation have been proposed as important contributors to the pathophysiology of sickle cell disease (SCD). We have provided evidence for the use of ET-1 receptor antagonists in improving hematological parameters in two transgenic mouse models of SCD (Rivera A., 2008, Amer J Physiol). However, the mechanisms that mediate the interplay between red blood cells (RBC) and the endothelium in SCD remain unresolved. Activation of endothelial cells leads to, among other factors, increased levels of protein disulfide isomerase (PDI). PDI catalyzes disulfide interchange reactions, mediates redox modifications and has been observed to be up-regulated under hypoxic conditions. We now report that circulating PDI activity is increased in BERK sickle transgenic mice when compared to wild-type controls. The mineralocorticoid receptor (MR) is a member of the steroid family of nuclear receptors that function as a transcription factor that upon binding to the hormone responsive element of genes such as edn1, the gene for ET-1, leads to increased ET-1 expression. In vivo, blockade of MR has been shown to reduce circulating ET-1 levels and kidney ET-1 mRNA expression. We hypothesized that MR blockade of BERK sickle transgenic mice would lead to reduced PDI activity and improved hematological parameters. Sickle mice were randomized to receive either normal rodent chow or chow containing eplerenone (156 mg/kg per day), an MR receptor antagonist, and tap water ad libitum for 14 days at which time the mice were sacrificed and tissues and blood collected. Plasma PDI activity was calculated by optimization of fluorescently labeled GSSG conversion to GSH. We observed that mice on eplerenone had significantly lower plasma PDI activity than mice on regular chow (63.7 ± 8.7 control diet to 47.9 ± 2.4 eplerenone, Relative Fluorescence Units; P<0.005, n=6 and 9, respectively). We also studied RBC Gardos channel activity in these mice and observed a significant reduction in clotrimazole-sensitive K+ efflux following MR blockade (2.49±0.5 control and 1.37±0.3 mmol/1013 cells × hr; P<0.04 n= 5 and 7 respectively). MR blockade was associated with increases in both erythrocyte MCV (41.3±2.5 vs 47.4±1.1 fL, P<0.03, n=7) and reticulocyte MCV (53.6.3±2.8 vs 60.1±0.6 fL, P<0.02, n=7) as determined by an ADVIA 120 hematology analyzer. In contrast no significant effects on MCHC levels were observed under these conditions. We then studied ET-1 gene expression using quantitative RT-PCR with ABI Taqman chemistries and GAPDH and β-actin as endogenous controls. We observed that MR blockade was associated with reduced expression of ET-1 mRNA in heart tissue (0.654 ± 0.233, ΔΔCT, relative to mice on regular chow, P<0.04, n=5 and n=7) but not lung tissue. Western blot analyses in membranes from human and mouse sickle erythrocytes and endothelial cells revealed the presence of both MR and PDI proteins. We then studied the effects of ET-1 in early cultures of BERK mouse aortic endothelial cells (MAEC). We observed that stimulation of MAEC cells with 100nM ET-1 for 4 hr was associated with increased mRNA expression of PDI levels that was 1.71 fold greater than vehicle treated cells (n=4, P<0.05). Thus, our results suggest that MR blockade reduces ET-1 levels leading to reduced Gardos and PDI activity in Sickle mice. These effects on PDI activity and Gardos channel regulation may represent a novel mechanism for protective effects of MR blockade aimed at ameliorating vascular complications of Sickle Cell Disease. Supported by NIH R01HL090632 to AR. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 15-15
Author(s):  
Chao Fang ◽  
Sheryl R. Bowley ◽  
Barbara C. Furie ◽  
Bruce Furie

Abstract Protein disulfide isomerase (PDI), secreted by platelets and endothelial cells upon vascular injury, is required for thrombus formation. However, the precise mechanism by which PDI regulates thrombosis remains elusive. Using PDI variants that form stable mixed disulfide complexes with their substrates, we performed kinetic trapping experiment in platelet rich plasma and identified multiple substrate proteins for PDI, including vitronectin. Importantly, when using variants of endoplasmic reticulum protein 57 (ERp57), a thiol isomerase that has a similar domain structure as PDI and is also important for thrombus formation, the trapping mutants of ERp57 do not interact with vitronectin. This result has demonstrated the substrate specificity of PDI during our kinetic trapping experiment. Further study using polyethylene glycol (PEG)-based gel mobility shift assay combined with mass spectrometry has identified the redox reaction between PDI and vitronectin occurs on two disulfide bonds Cys 137-161 and Cys 274-453 in the hemopexin-like domains of plasma vitronectin. Vitronectin, as a substrate of extracellular PDI, has been shown to be important for thrombus formation. Vitronectin null mice have reduced platelet accumulation and fibrin deposition in the cremaster arterioles following laser injury. Vitronectin null mice also have significantly prolonged large-vessel thrombosis in the carotid artery using the ferric chloride thrombosis model. Using intravital microscopy we showed that vitronectin rapidly accumulates in a growing thrombus following vessel injury. When mice are treated with eptifibatide to eliminate platelet accumulation, we still observe significant amount of vitronectin accumulation on the vessel wall in the absence of platelet thrombus. This observation was further confirmed using confocal intravital microscopy. After 3D reconstruction of a growing thrombus in mouse cremaster arteriole, vitronectin was identified to locate primarily on the CD31 stained vessel wall. These combined studies suggest that plasma-derived vitronectin and not platelet-derived vitronectin is the primary substrate of PDI. Our study further showed that the indispensable role of vitronectin to a growing thrombus depends on extracellular PDI. Native plasma vitronectin does not bind to αvβ3 or αIIbβ3-integrins on endothelial cells and platelets. On solid phase binding assay, plasma sample pre-treated with wild-type PDI showed significantly increased binding of vitronectin to its ligand αvβ3 or αIIbβ3-integrins. However, this increase was not observed in plasma pre-treated with dead-mutant PDI or ERp57. In addition, using immunofluorescent staining, PDI treated plasma sample also showed significantly increased binding of vitronectin to activated human umbilical vein endothelial cells (HUVECs) and this binding was abrogated by RGD peptides or an αvβ3 blocking antibody. The critical role of extracellular PDI for the regulation of vitronectin in a growing thrombus was further confirmed in our in vivo studies. When mice were treated with quecetin-3-rutinoside or two different inhibitory antibodies that selectively block PDI activity, the accumulation of vitronectin and platelets was significantly reduced. These combined results demonstrate that extracellular PDI regulates vitronectin in a growing thrombus to promote platelet accumulation and fibrin generation. In summary, our studies have revealed a novel regulatory mechanism during the initiation of thrombus formation. Under normal physiologic conditions in the absence of secreted PDI, thrombus formation is suppressed and maintains a quiescent, patent vasculature. The release of PDI during vascular injury serves as a novel regulatory switch that allows activation of proteins, including vitronectin, which are critical for the following platelet accumulation and fibrin generation. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (22) ◽  
pp. 4665-4674 ◽  
Author(s):  
Reema Jasuja ◽  
Bruce Furie ◽  
Barbara C. Furie

Protein disulfide isomerase (PDI) catalyzes the oxidation reduction and isomerization of disulfide bonds. We have previously identified an important role for extracellular PDI during thrombus formation in vivo. Here, we show that endothelial cells are a critical cellular source of secreted PDI, important for fibrin generation and platelet accumulation in vivo. Functional PDI is rapidly secreted from human umbilical vein endothelial cells in culture upon activation with thrombin or after laser-induced stimulation. PDI is localized in different cellular compartments in activated and quiescent endothelial cells, and is redistributed to the plasma membrane after cell activation. In vivo studies using intravital microscopy show that PDI appears rapidly after laser-induced vessel wall injury, before the appearance of the platelet thrombus. If platelet thrombus formation is inhibited by the infusion of eptifibatide into the circulation, PDI is detected after vessel wall injury, and fibrin deposition is normal. Treatment of mice with a function blocking anti-PDI antibody completely inhibits fibrin generation in eptifibatide-treated mice. These results indicate that, although both platelets and endothelial cells secrete PDI after laser-induced injury, PDI from endothelial cells is required for fibrin generation in vivo.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 12-12
Author(s):  
Josue A. Benabe-Carlo ◽  
Jose R Romero ◽  
Enrique D. Machado-Fiallo ◽  
Arelys Ramos-Rivera ◽  
Gregory N. Prado ◽  
...  

Abstract We have recently reported that Endothelin-1 (ET1), a potent vasoconstrictor peptide, is implicated in the pathophysiology of Sickle Cell Disease (SCD) via increased circulating Protein Disulfide Isomerase (PDI) activity (Prado, 2013 FASEB J). PDI is a multifunctional enzyme of the thioredoxin superfamily that mediates redox modifications, catalyzes disulfide interchange reactions in the plasma membrane, regulates KCNN4 channel and erythrocyte volume and is up-regulated under hypoxic conditions as commonly observed in SCD. In erythrocytes, ET1 stimulates PDI activity via activation of ET1 receptor B (ETRB). However, the precise mechanisms by which ET1 leads to increases in PDI are not entirely clear. There is evidence that activation of endothelial cells leads to increased PDI secretion and that ETRBs form a complex with caveolin-1 (CAV1) within caveolae to mediate ET1’s cellular effects. We tested the hypothesis that reduction of CAV1 would alter PDI secretion. We studied the in vivo effects of endothelial-specific CAV1 knockdown on circulating PDI activity in mice. We optimized conditions to measure circulating PDI using fluorescently labeled GSSG conversion to GSH. We now report that circulating plasma PDI levels were significantly decreased in CAV1 knockdown mice when compared to wild-type littermates (WT) (7.44±0.70 vs 10.93±2.66, n=7, P<0.05). In addition and consistent with our report showing a role for PDI in erythrocyte volume regulation, we also observed lower cell hemoglobin concentration mean (CHCM) and hemoglobin distribution width (HDW) that was associated with increased erythrocyte and reticulocyte mean cell volume (MCV) in blood from CAV1 knockdown mice when compared to WT (n=13 and n=19, respectively, P<0.005). We then isolated early cultures of mouse aortic endothelial cells (MAEC) from these mice and measured PDI activity following 24 hrs of incubation in 0.4% fetal bovine serum. Our results show that MAEC from CAV1 knockdown mice had lower PDI secretion when compared to cells from WT mice (99.4±16 vs 129.9±35, n=5, P<0.03). We then studied the effects of ET1 on PDI secretion from human endothelial cells. We detected PDI and ETRB by western blot analyses in membranes from the human endothelial cell line, EA.hy926 (EA). We observed that incubation of EA cells for 60 mins with 10-7 M ET1 was associated with increased extracellular PDI activity (15.97±7.22 to 34.07±8.89 [RFU/mg protein], n=3, P<0.011) that was sensitive to preincubation with BQ788, a specific ETRB receptor antagonist (15.97±7.22 to 7.97±3.25 (RFU/mg protein), n=3, P<0.02). Similar increases in PDI were observed when cells were treated with the specific ETRB agonist, IRL1620 (1143±137 to 1593 207 RFU/mg protein). In addition, PDI siRNA knockdown was associated with reduced ET1-stimulated PDI activity when compared to scrambled siRNA transfected cells (1731±147 to 757±141 RFU, n=2). We then tested the effects of methyl-β-cyclodextrin to disrupt caveolae in these cells and observed a blunted IRL1620–stimulated PDI response (288±40 to 171±14 RFU/mg protein, n=3, P<0.025). We also characterized the effects of ET1 on PDI expression in EA cells, using quantitative RT-PCR with ABI TaqMan probes and β-actin as an endogenous control and observed that stimulation of EA cells with 10-8 M ET1 for 4 hr was associated with increased PDI mRNA expression levels that were 1.89 fold greater than vehicle treated cells (n=6, P<0.04). Thus our results provide evidence for a heretofore unrecognized role of endothelial specific CAV1 in erythrocyte volume and circulating PDI levels. Supported by NIH R01HL090632 (AR) and R01HL104032 (LHP). Disclosures: No relevant conflicts of interest to declare.


2017 ◽  
Vol 103 ◽  
pp. 199-208 ◽  
Author(s):  
Thaís L.S. Araujo ◽  
Julianna D. Zeidler ◽  
Percíllia V.S. Oliveira ◽  
Matheus H. Dias ◽  
Hugo A. Armelin ◽  
...  

FEBS Journal ◽  
2008 ◽  
Vol 275 (8) ◽  
pp. 1813-1823 ◽  
Author(s):  
Maria Swiatkowska ◽  
Jacek Szymański ◽  
Gianluca Padula ◽  
Czeslaw S. Cierniewski

Oncotarget ◽  
2016 ◽  
Vol 7 (50) ◽  
pp. 83231-83240 ◽  
Author(s):  
Guan-qi Fan ◽  
Ran-ran Qin ◽  
Yi-hui Li ◽  
Dai-jun Song ◽  
Tong-shuai Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document