scholarly journals Curcumin protects cardiomyopathy damage through inhibiting the production of reactive oxygen species in type 2 diabetic mice

2020 ◽  
Vol 530 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Xia Wu ◽  
LeiTao Huang ◽  
XueLiang Zhou ◽  
JiChun Liu
2014 ◽  
Vol 306 (11) ◽  
pp. H1558-H1568 ◽  
Author(s):  
Saisudha Koka ◽  
Hema S. Aluri ◽  
Lei Xi ◽  
Edward J. Lesnefsky ◽  
Rakesh C. Kukreja

Enhanced nitric oxide (NO) production is known to activate silent information regulator 1 (SIRT1), which is a histone deacetylase that regulates PGC-1α, a regulator of mitochondrial biogenesis and coactivator of transcription factors impacting energy homeostasis. Since phosphodiesterase-5 inhibitors potentiate NO signaling, we hypothesized that chronic treatment with phosphodiesterase-5 inhibitor tadalafil would activate SIRT1-PGC-1α signaling and protect against metabolic stress-induced mitochondrial dysfunction in diabetic hearts. Diabetic db/db mice ( n = 32/group; 40 wk old) were randomized to receive DMSO (10%, 0.2 ml ip) or tadalafil (1 mg/kg ip in 10% DMSO) for 8 wk. Wild-type C57BL mice served as nondiabetic controls. The hearts were excised and homogenized to study SIRT1 activity and downstream protein targets. Mitochondrial function was determined by measuring oxidative phosphorylation (OXPHOS), and reactive oxygen species generation was studied in isolated mitochondria. Tadalafil-treated diabetic mice demonstrated significantly improved left ventricular function, which is associated with increased cardiac SIRT1 activity. Tadalafil also enhanced plasma NO oxidation levels, myocardial SIRT1, PGC-1α expression, and phosphorylation of eNOS, Akt, and AMPK in the diabetic hearts. OXPHOS with the complex I substrate glutamate was decreased by 50% in diabetic hearts compared with the nondiabetic controls. Tadalafil protected OXPHOS with an improved glutamate state 3 respiration rates. The increased reactive oxygen species production from complex I was significantly decreased by tadalafil treatment. In conclusion, chronic treatment with tadalafil activates NO-induced SIRT1-PGC-1α signaling and attenuates mitochondrial dysfunction in type 2 diabetic hearts.


Diabetologia ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 574-582 ◽  
Author(s):  
M. A. Abdul-Ghani ◽  
R. Jani ◽  
A. Chavez ◽  
M. Molina-Carrion ◽  
D. Tripathy ◽  
...  

2013 ◽  
Vol 305 (10) ◽  
pp. C1033-C1040 ◽  
Author(s):  
Young-Eun Cho ◽  
Aninda Basu ◽  
Anzhi Dai ◽  
Michael Heldak ◽  
Ayako Makino

Endothelial cell (EC) dysfunction is implicated in cardiovascular diseases, including diabetes. The decrease in nitric oxide (NO) bioavailability is the hallmark of endothelial dysfunction, and it leads to attenuated vascular relaxation and atherosclerosis followed by a decrease in blood flow. In the heart, decreased coronary blood flow is responsible for insufficient oxygen supply to cardiomyocytes and, subsequently, increases the incidence of cardiac ischemia. In this study we investigate whether and how reactive oxygen species (ROS) in mitochondria contribute to coronary endothelial dysfunction in type 2 diabetic (T2D) mice. T2D was induced in mice by a high-fat diet combined with a single injection of low-dose streptozotocin. ACh-induced vascular relaxation was significantly attenuated in coronary arteries (CAs) from T2D mice compared with controls. The pharmacological approach reveals that NO-dependent, but not hyperpolarization- or prostacyclin-dependent, relaxation was decreased in CAs from T2D mice. Attenuated ACh-induced relaxation in CAs from T2D mice was restored toward control level by treatment with mitoTempol (a mitochondria-specific O2− scavenger). Coronary ECs isolated from T2D mice exhibited a significant increase in mitochondrial ROS concentration and decrease in SOD2 protein expression compared with coronary ECs isolated from control mice. Furthermore, protein ubiquitination of SOD2 was significantly increased in coronary ECs isolated from T2D mice. These results suggest that augmented SOD2 ubiquitination leads to the increase in mitochondrial ROS concentration in coronary ECs from T2D mice and attenuates coronary vascular relaxation in T2D mice.


Endocrinology ◽  
2015 ◽  
Vol 156 (3) ◽  
pp. 923-933 ◽  
Author(s):  
Theresa Schöttl ◽  
Lisa Kappler ◽  
Katharina Braun ◽  
Tobias Fromme ◽  
Martin Klingenspor

Abstract Accumulation of visceral fat is associated with metabolic risk whereas excessive amounts of peripheral fat are considered less problematic. At the same time, altered white adipocyte mitochondrial bioenergetics has been implicated in the pathogenesis of insulin resistance and type 2 diabetes. We therefore investigated whether the metabolic risk of visceral vs peripheral fat coincides with a difference in mitochondrial capacity of white adipocytes. We assessed bioenergetic parameters of subcutaneous inguinal and visceral epididymal white adipocytes from male C57BL/6N mice employing a comprehensive respirometry setup of intact and permeabilized adipocytes as well as isolated mitochondria. Inguinal adipocytes clearly featured a higher respiratory capacity attributable to increased mitochondrial respiratory chain content compared with epididymal adipocytes. The lower capacity of mitochondria from epididymal adipocytes was accompanied by an increased generation of reactive oxygen species per oxygen consumed. Feeding a high-fat diet (HFD) for 1 week reduced white adipocyte mitochondrial capacity, with stronger effects in epididymal when compared with inguinal adipocytes. This was accompanied by impaired body glucose homeostasis. Therefore, the limited bioenergetic performance combined with the proportionally higher generation of reactive oxygen species of visceral adipocytes could be seen as a candidate mechanism mediating the elevated metabolic risk associated with this fat depot.


Sign in / Sign up

Export Citation Format

Share Document