IKKε protects against starvation-induced NLRP3 inflammasome and pyroptosis in H9c2 cells by alleviating mitochondrial injury

Author(s):  
Ganyi Chen ◽  
Yueyue Xu ◽  
Rui Fan ◽  
Yafeng Liu ◽  
Yiwei Yao ◽  
...  
2018 ◽  
Vol 499 (2) ◽  
pp. 267-272 ◽  
Author(s):  
Ao Chen ◽  
Zhangwei Chen ◽  
Yan Xia ◽  
Danbo Lu ◽  
Xiangdong Yang ◽  
...  

2022 ◽  
Vol 2022 ◽  
pp. 1-15
Author(s):  
Lei Zhang ◽  
Cundong Fan ◽  
Hua-Chen Jiao ◽  
Qian Zhang ◽  
Yue-Hua Jiang ◽  
...  

Calycosin (CAL) is the main active component present in Astragalus and reportedly possesses diverse pharmacological properties. However, the cardioprotective effect and underlying mechanism of CAL against doxorubicin- (DOX-) induced cardiotoxicity need to be comprehensively examined. Herein, we aimed to investigate whether the cardioprotective effects of CAL are related to its antipyroptotic effect. A cardiatoxicity model was established by stimulating H9c2 cells and C57BL/6J mice using DOX. In vitro, CAL increased H9c2 cell viability and decreased DOX-induced pyroptosis via NLRP3, caspase-1, and gasdermin D signaling pathways in a dose-dependent manner. In vivo, CAL-DOX cotreatment effectively suppressed DOX-induced cytotoxicity as well as inflammatory and cardiomyocyte pyroptosis via the same molecular mechanism. Next, we used nigericin (Nig) and NLRP3 forced overexpression to determine whether CAL imparts antipyroptotic effects by inhibiting the NLRP3 inflammasome in vitro. Furthermore, CAL suppressed DOX-induced mitochondrial oxidative stress injury in H9c2 cells by decreasing the generation of reactive oxygen species and increasing mitochondrial membrane potential and adenosine triphosphate. Likewise, CAL attenuated the DOX-induced increase in malondialdehyde content and decreased superoxide dismutase and glutathione peroxidase activities in H9c2 cells. In vivo, CAL afforded a protective effect against DOX-induced cardiac injury by improving myocardial function, inhibiting brain natriuretic peptide, and improving the changes of the histological morphology of DOX-treated mice. Collectively, our findings confirmed that CAL alleviates DOX-induced cardiotoxicity and pyroptosis by inhibiting NLRP3 inflammasome activation in vivo and in vitro.


2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
A Chen ◽  
Z W Chen ◽  
Y Xia ◽  
D B Lu ◽  
X D Yang ◽  
...  

Author(s):  
Weiran Dai ◽  
Shuang Zhou ◽  
Guoqiang Zhong ◽  
Zhiyuan Jiang

IntroductionRecently, enhanced activation of NLRP3 has been reported to be involved in atrial fibrillation (AF). This study aimed to detect the correlation between oxidative stress and NLRP3 and explore the role of miR-223-3p in the injury of ROS induced by Ang II.Material and methodsSerum Ang II levels were examined by ELISA kit. Fibrosis levels of right atrial appendages were determined by Masson’s staining. H9c2 cells tansfected with miR-223-3p mimics were treated with Ang II with or without MCC950 (a potent selective NLRP3 inhibitor). Cell viability was detected by CCK-8 assay. Protein abundance was detected by Western blot. MDA assay and DCFH-DA were used to measured oxidative stress. RT-qPCR was used to assay the expression of miR-223-3p and NLRP3.ResultsTotally, 43 patients enrolled in this study, including 20 patients with persistent (chronic) AF (cAF). Comparing with sinus rhythm (SR) group, we found an enhanced activation of NLRP3 inflammasome which were positively correlated with oxidative stress and serum Ang II level in cAF patients. Ang II induced ROS generation and inhibited the H9c2 cell viability. In addition, overexpression of miR-223-3p functioned as MCC950 which inhibited the expression of NLRP3 inflammasome and partly attenuated the effects of ROS induced by Ang II on H9c2 cell viability. Lastly, we used luciferase assay to confirm NLRP3 as a direct target gene of miR-223-3p.ConclusionsmiR-223-3p has protective effects on oxidative stress induced by Ang II in AF by targeting NLRP3 and could provide a new potential intervention targets for treatment of AF.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhen Qiu ◽  
Yuhong He ◽  
Hao Ming ◽  
Shaoqing Lei ◽  
Yan Leng ◽  
...  

Diabetes aggravates myocardial ischemia-reperfusion (I/R) injury because of the combination effects of changes in glucose and lipid energy metabolism, oxidative stress, and systemic inflammatory response. Studies have indicated that myocardial I/R may coincide and interact with sepsis and inflammation. However, the role of LPS in hypoxia/reoxygenation (H/R) injury in cardiomyocytes under high glucose conditions is still unclear. Our objective was to examine whether lipopolysaccharide (LPS) could aggravate high glucose- (HG-) and hypoxia/reoxygenation- (H/R-) induced injury by upregulating ROS production to activate NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. H9C2 cardiomyocytes were exposed to HG (30 mM) condition with or without LPS, along with caspase-1 inhibitor (Ac-YVAD-CMK), inflammasome inhibitor (BAY11-7082), ROS scavenger N-acetylcysteine (NAC), or not for 24 h, then subjected to 4 h of hypoxia followed by 2 h of reoxygenation (H/R). The cell viability, lactate dehydrogenase (LDH) release, caspase-1 activity, and intracellular ROS production were detected by using assay kits. The incidence of pyroptosis was detected by calcein-AM/propidium iodide (PI) double staining kit. The concentrations of IL-1β and IL-18 in the supernatants were assessed by ELISA. The mRNA levels of NLRP3, ASC, and caspase-1 were detected by qRT-PCR. The protein levels of NF-κB p65, NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18 were detected by western blot. The results indicated that pretreatment LPS with 1 μg/ml not 0.1 μg/ml could efficiently aggravate HG and H/R injury by activating NLRP3 inflammasome to mediate pyroptosis in H9C2 cells, as evidenced by increased LDH release and decreased cell viability in the cells, and increased expression of NLRP3, ASC, cleaved caspase-1 (p10), IL-1β, and IL-18. Meanwhile, Ac-YVAD-CMK, BAY11-7082, or NAC attenuated HG- and H/R-induced H9C2 cell injury with LPS stimulated by reversing the activation of NLRP3 inflammasome-mediated pyroptosis. In conclusion, LPS could increase the sensitivity of H9C2 cells to HG and H/R and aggravated HG- and H/R-induced H9C2 cell injury by promoting ROS production to induce NLRP3 inflammasome-mediated pyroptosis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ao Chen ◽  
Zhangwei Chen ◽  
You Zhou ◽  
Yuan Wu ◽  
Yan Xia ◽  
...  

AbstractCoronary microembolization (CME), a common reason for periprocedural myocardial infarction (PMI), bears very important prognostic implications. However, the molecular mechanisms related to CME remain largely elusive. Statins have been shown to prevent PMI, but the underlying mechanism has not been identified. Here, we examine whether the NLRP3 inflammasome contributes to CME-induced cardiac injury and investigate the effects of statin therapy on CME. In vivo study, mice with CME were treated with 40 mg/kg/d rosuvastatin (RVS) orally or a selective NLRP3 inflammasome inhibitor MCC950 intraperitoneally (20 mg/kg/d). Mice treated with MCC950 and RVS showed improved cardiac contractile function and morphological changes, diminished fibrosis and microinfarct size, and reduced serum lactate dehydrogenase (LDH) level. Mechanistically, RVS decreased the expression of NLRP3, caspase-1, interleukin-1β, and Gasdermin D N-terminal domains. Proteomics analysis revealed that RVS restored the energy metabolism and oxidative phosphorylation in CME. Furthermore, reduced reactive oxygen species (ROS) level and alleviated mitochondrial damage were observed in RVS-treated mice. In vitro study, RVS inhibited the activation of NLRP3 inflammasome induced by tumor necrosis factor α plus hypoxia in H9c2 cells. Meanwhile, the pyroptosis was also suppressed by RVS, indicated by the increased cell viability, decreased LDH and propidium iodide uptake in H9c2 cells. RVS also reduced the level of mitochondrial ROS generation in vitro. Our results indicate the NLRP3 inflammasome-dependent cardiac pyroptosis plays an important role in CME-induced cardiac injury and its inhibitor exerts cardioprotective effect following CME. We also uncover the anti-pyroptosis role of RVS in CME, which is associated with regulating mitochondrial ROS.


Author(s):  
Tian Y ◽  
◽  
Tian W ◽  
Bai Y ◽  
Zhang A ◽  
...  

The purpose of this study was to determine the effects and mechanisms of ethanol on oxidative stress-induced cardiac H9c2 cells mitochondrial injury under hyperglycemic conditions. Under hyperglycemic conditions, ethanol pretreatment (10-100 μM) prevented H2O2-induced mitochondria swelling, as well as decreased cell viability and Respiratory Control Ratio (RCR) in the H9c2 cells. It also prevented TMRE fluorescence intensity loss and DCF fluorescence intensity increase under hyperglycemic conditions. These effects of ethanol were reversed by the SAPK/JNK agonist, anisomycin. Finally, treatment of H9c2 cells with 33mM glucose significantly enhanced Akt and ERK phosphorylation, which was not affected by ethanol. However, ethanol decreased the phosphorylation of SAPK/JNK under hyperglycemic conditions. Collectively, these findings indicate that under hyperglycemic conditions, that ethanol prevents oxidative stress-induced mitochondrial injury in cardiac H9c2 cells by preventing ROS generation via inhibiting the SAPK/JNK signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document