scholarly journals The heptamer sgRNA targeting the human OCT4 mRNA can upregulate the OCT4 expression

2021 ◽  
Vol 26 ◽  
pp. 100918
Author(s):  
Tadasuke Nozaki ◽  
Masayuki Takahashi ◽  
Tatsuya Ishikawa ◽  
Arisa Haino ◽  
Mineaki Seki ◽  
...  
Keyword(s):  
Author(s):  
Kee-Pyo Kim ◽  
Dong Wook Han ◽  
Johnny Kim ◽  
Hans R. Schöler

AbstractEctopic expression of Oct4, Sox2, Klf4 and c-Myc can reprogram somatic cells into induced pluripotent stem cells (iPSCs). Attempts to identify genes or chemicals that can functionally replace each of these four reprogramming factors have revealed that exogenous Oct4 is not necessary for reprogramming under certain conditions or in the presence of alternative factors that can regulate endogenous Oct4 expression. For example, polycistronic expression of Sox2, Klf4 and c-Myc can elicit reprogramming by activating endogenous Oct4 expression indirectly. Experiments in which the reprogramming competence of all other Oct family members tested and also in different species have led to the decisive conclusion that Oct proteins display different reprogramming competences and species-dependent reprogramming activity despite their profound sequence conservation. We discuss the roles of the structural components of Oct proteins in reprogramming and how donor cell epigenomes endow Oct proteins with different reprogramming competences.


2015 ◽  
Vol 24 (3) ◽  
pp. 345-353 ◽  
Author(s):  
Ji Wang ◽  
Vera Huang ◽  
Lin Ye ◽  
Alicia Bárcena ◽  
Guiting Lin ◽  
...  

2015 ◽  
Vol 35 (6) ◽  
pp. 1014-1025 ◽  
Author(s):  
Arvind Shakya ◽  
Catherine Callister ◽  
Alon Goren ◽  
Nir Yosef ◽  
Neha Garg ◽  
...  

The mechanisms whereby the crucial pluripotency transcription factor Oct4 regulates target gene expression are incompletely understood. Using an assay system based on partially differentiated embryonic stem cells, we show that Oct4 opposes the accumulation of local H3K9me2 and subsequent Dnmt3a-mediated DNA methylation. Upon binding DNA, Oct4 recruits the histone lysine demethylase Jmjd1c. Chromatin immunoprecipitation (ChIP) time course experiments identify a stepwise Oct4 mechanism involving Jmjd1c recruitment and H3K9me2 demethylation, transient FACT ( fa cilitates c hromatin t ransactions) complex recruitment, and nucleosome depletion. Genome-wide and targeted ChIP confirms binding of newly synthesized Oct4, together with Jmjd1c and FACT, to the Pou5f1 enhancer and a small number of other Oct4 targets, including the Nanog promoter. Histone demethylation is required for both FACT recruitment and H3 depletion. Jmjd1c is required to induce endogenous Oct4 expression and fully reprogram fibroblasts to pluripotency, indicating that the assay system identifies functional Oct4 cofactors. These findings indicate that Oct4 sequentially recruits activities that catalyze histone demethylation and depletion.


Development ◽  
2012 ◽  
Vol 139 (13) ◽  
pp. 2288-2298 ◽  
Author(s):  
R. Osorno ◽  
A. Tsakiridis ◽  
F. Wong ◽  
N. Cambray ◽  
C. Economou ◽  
...  
Keyword(s):  

2013 ◽  
Vol 59 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Yuuki ISAJI ◽  
Moeko MURATA ◽  
Naoya TAKAGUCHI ◽  
Toshita MUKAI ◽  
Yosuke TAJIMA ◽  
...  

2010 ◽  
Vol 34 (12) ◽  
pp. 1842-1848 ◽  
Author(s):  
Kaoru Abiko ◽  
Masaki Mandai ◽  
Junzo Hamanishi ◽  
Noriomi Matsumura ◽  
Tsukasa Baba ◽  
...  

2007 ◽  
Vol 19 (1) ◽  
pp. 188
Author(s):  
N. I. Alexopoulos ◽  
N. T. D'Cruz ◽  
P. Maddox-Hyttel

In most animal species, germ cell precursors, i.e., primordial germ cells (PGCs), arise from the epiblast and then migrate to the future gonadal ridge during development. At least in the mouse, PGCs may be cultured as embryonic germ cells that remain pluripotent. PGCs are the only cells in which OCT4 expression is maintained after gastrulation. The present study aimed at identifying the localization of PGCs in Day 21 in vivo-derived bovine embryos by immunohistochemical staining against OCT4. Six embryos were obtained after slaughter of superovulated heifers 21 days after insemination. The uterine tracts were flushed and embryos fixed, paraffin-embedded, and processed for immunohistochemistry. Embryos were sagitally sectioned, and selected serial sections were immunohistochemically stained for OCT4 to identify potential PGCs. Two embryos were at the neural groove stage. At this stage of development, the primitive gut had not yet been abstricted from the yolk sac and the allantois was not visible. A weak homogeneous OCT4 staining was localized to nuclei in a well-defined region of the epiblast, which was in the process of a gradual anterior to posterior differentiation into neural and surface ectoderm. Moreover, a strong OCT4 staining was localized to a few scattered cells found in the visceral mesoderm associated with the yolk sac in the region of the endoderm-hypoblast transition at some distance from the embryo proper. Four embryos were at the neural tube/somite stage. At this stage of development, the primitive gut had been defined and only the midgut was connected to the yolk sac. Furthermore, the allantois was visible as an anchor-shaped structure at the posterior end of the embryo. A strong OCT4 staining was found in nuclei of solitary cells in the endoderm and its associated visceral mesoderm of the ventral aspect of the mid and hindgut. The described OCT4 staining corresponds well with previous findings in the pig, in which presumptive PGCs are found in the endoderm epithelium during the neural groove stage. Later, during the early somite stages, they are localized in the endoderm and visceral mesoderm of the yolk sac and allantois, and in later somite stages, they are found in the developing genital ridge. This is, however, the first study to demonstrate the localization of these cells, at least by OCT4 staining, in bovine embryos at the neural groove and neural tube/somite stages.


Sign in / Sign up

Export Citation Format

Share Document