nuclear distribution
Recently Published Documents


TOTAL DOCUMENTS

131
(FIVE YEARS 5)

H-INDEX

32
(FIVE YEARS 0)

2021 ◽  
Vol 221 (1) ◽  
Author(s):  
Ojas Deshpande ◽  
Jorge de-Carvalho ◽  
Diana V. Vieira ◽  
Ivo A. Telley

The early insect embryo develops as a multinucleated cell distributing the genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing. Contemporary hypotheses propose actomyosin-driven cytoplasmic movement transporting nuclei or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule cross-linking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance in Drosophila. Germline knockdown causes irregular, less-dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-inhibited embryos, following micromanipulation-assisted repositioning. A dimerization-deficient Feo abolishes nuclear separation in embryo explants, while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A cross-linking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.







2021 ◽  
pp. 105047
Author(s):  
Joana D’Arc Campeiro ◽  
João V. Nani ◽  
Gabriela G. Monte ◽  
PriscilaG.C. Almeida ◽  
Marcelo A. Mori ◽  
...  


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Joanna Stachecka ◽  
Pawel A. Kolodziejski ◽  
Magdalena Noak ◽  
Izabela Szczerbal

AbstractA characteristic spatial distribution of the main chromatin fractions is observed in most mammalian cell nuclei, with euchromatin localized in the interior and heterochromatin at the nuclear periphery. It has been shown that interactions of heterochromatin with the nuclear lamina are necessary to establish this conventional architecture. Adipocytes are specific cells in which a reduction in lamin A/C expression is observed. We hypothesize that the loss of lamin A/C during adipogenic differentiation of mesenchymal stem cells (MSCs) may be associated with the reorganization of the main classes of chromatin in the nucleus. Thus, in this study, we examine the abundance and nuclear distribution of selected heterochromatin (H3K9me3, H3K27me3 and H4K20me3) and euchromatin (H4K8ac, H3K4me3 and H3K9ac) histone marks during in vitro adipogenesis, using the pig as a model organism. We found that not only did the expression of lamin A/C decrease in our differentiation system, but so did the expression of lamin B receptor (LBR). The level of two heterochromatin marks, H3K27me3 and H4K20me3, increased during differentiation, while no changes were observed for H3K9me3. The levels of two euchromatin histone marks, H4K8ac and H3K9ac, were significantly higher in adipocytes than in undifferentiated cells, while the level of H3K4me3 did not change significantly. The spatial distribution of all the examined histone marks altered during in vitro adipogenesis. H3K27me3 and H4K20me3 moved towards the nuclear periphery and H3K9me3 localized preferentially in the intermediate part of adipocyte nuclei. The euchromatin marks H3K9ac and H3K4me3 preferentially occupied the peripheral part of the adipocyte nuclei, while H4K8ac was more evenly distributed in the nuclei of undifferentiated and differentiated cells. Analysis of the nuclear distribution of repetitive sequences has shown their clustering and relocalization toward nuclear periphery during differentiation. Our study shows that dynamic changes in the abundance and nuclear distribution of active and repressive histone marks take place during adipocyte differentiation. Nuclear reorganization of heterochromatin histone marks may allow the maintenance of the nuclear morphology of the adipocytes, in which reduced expression of lamin A/C and LBR is observed.



2020 ◽  
Vol 34 (4) ◽  
pp. 467-477 ◽  
Author(s):  
João V Nani ◽  
Matheus C Fonseca ◽  
Sheila A Engi ◽  
Mayara G Perillo ◽  
Carlos SB Dias ◽  
...  

Background: Interaction of nuclear-distribution element-like 1 with disrupted-in-schizophrenia 1 protein is crucial for neurite outgrowth/neuronal migration, and this interaction competitively inhibits nuclear-distribution element-like 1 peptidase activity. Nuclear-distribution element-like 1 activity is reduced in antipsychotic-naïve first-episode psychosis and in medicated chronic schizophrenia, with even lower activity in treatment-resistant schizophrenia. Aims: The purpose of this study was to investigate in a rat model overexpressing human non-mutant disrupted-in-schizophrenia 1, with consequent dysfunctional disrupted-in-schizophrenia 1 signaling, the relation of nuclear-distribution element-like 1 activity with neurodevelopment and dopamine-related phenotypes. Methods: We measured cell distribution in striatum and cortex by histology and microtomography, and quantified the basal and amphetamine-stimulated locomotion and nuclear-distribution element-like 1 activity (in blood and brain) of transgenic disrupted-in-schizophrenia 1 rat vs wild-type littermate controls. Results: 3D assessment of neuronal cell body number and spatial organization of mercury-impregnated neurons showed defective neuronal positioning, characteristic of impaired cell migration, in striatum/nucleus accumbens, and prefrontal cortex of transgenic disrupted-in-schizophrenia 1 compared to wild-type brains. Basal nuclear-distribution element-like 1 activity was lower in the blood and also in several brain regions of transgenic disrupted-in-schizophrenia 1 compared to wild-type. Locomotion and nuclear-distribution element-like 1 activity were both significantly increased by amphetamine in transgenic disrupted-in-schizophrenia 1, but not in wild-type. Conclusions: Our findings in the transgenic disrupted-in-schizophrenia 1 rat allow us to state that decreased nuclear-distribution element-like 1 activity reflects both a trait (neurodevelopmental phenotype) and a state (amphetamine-induced dopamine release). We thus define here a role for decreased nuclear-distribution element-like 1 peptidase activity both for the developing brain (the neurodevelopmental phenotype) and for the adult (interaction with dopaminergic responses), and present nuclear-distribution element-like 1 activity in a novel way, as unifying neurodevelopmental with dysfunctional dopamine response phenotypes.



2019 ◽  
Author(s):  
Ojas Deshpande ◽  
Jorge de-Carvalho ◽  
Diana V. Vieira ◽  
Ivo A. Telley

AbstractThe early insect embryo develops as a multinucleated cell distributing genome uniformly to the cell cortex. Mechanistic insight for nuclear positioning beyond cytoskeletal requirements is missing to date. Contemporary hypotheses propose actomyosin driven cytoplasmic movement transporting nuclei, or repulsion of neighbor nuclei driven by microtubule motors. Here, we show that microtubule crosslinking by Feo and Klp3A is essential for nuclear distribution and internuclear distance maintenance. Germline knockdown causes irregular, less dense nuclear delivery to the cell cortex and smaller distribution in ex vivo embryo explants. A minimal internuclear distance is maintained in explants from control embryos but not from Feo-depleted embryos, following micromanipulation assisted repositioning. A dimerization deficient Feo abolishes nuclear separation in embryo explants while the full-length protein rescues the genetic knockdown. We conclude that Feo and Klp3A crosslinking of antiparallel microtubule overlap generates a length-regulated mechanical link between neighboring microtubule asters. Enabled by a novel experimental approach, our study illuminates an essential process of embryonic multicellularity.



2019 ◽  
Vol 39 (5) ◽  
pp. 358-367 ◽  
Author(s):  
Shinichiro Mori ◽  
Hiroyuki Honda ◽  
Takashi Ishii ◽  
Motoi Yoshimura ◽  
Naokazu Sasagasako ◽  
...  


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Edouard Evangelisti ◽  
Liron Shenhav ◽  
Temur Yunusov ◽  
Marie Le Naour–Vernet ◽  
Philipp Rink ◽  
...  

ABSTRACT Multinucleate fungi and oomycetes are phylogenetically distant but structurally similar. To address whether they share similar nuclear dynamics, we carried out time-lapse imaging of fluorescently labeled Phytophthora palmivora nuclei. Nuclei underwent coordinated bidirectional movements during plant infection. Within hyphal networks growing in planta or in axenic culture, nuclei either are dragged passively with the cytoplasm or actively become rerouted toward nucleus-depleted hyphal sections and often display a very stretched shape. Benomyl-induced depolymerization of microtubules reduced active movements and the occurrence of stretched nuclei. A centrosome protein localized at the leading end of stretched nuclei, suggesting that, as in fungi, astral microtubule-guided movements contribute to nuclear distribution within oomycete hyphae. The remarkable hydrodynamic shape adaptations of Phytophthora nuclei contrast with those in fungi and likely enable them to migrate over longer distances. Therefore, our work summarizes mechanisms which enable a near-equal nuclear distribution in an oomycete. We provide a basis for computational modeling of hydrodynamic nuclear deformation within branched tubular networks. IMPORTANCE Despite their fungal morphology, oomycetes constitute a distinct group of protists related to brown algae and diatoms. Many oomycetes are pathogens and cause diseases of plants, insects, mammals, and humans. Extensive efforts have been made to understand the molecular basis of oomycete infection, but durable protection against these pathogens is yet to be achieved. We use a plant-pathogenic oomycete to decipher a key physiological aspect of oomycete growth and infection. We show that oomycete nuclei travel actively and over long distances within hyphae and during infection. Such movements require microtubules anchored on the centrosome. Nuclei hydrodynamically adapt their shape to travel in or against the flow. In contrast, fungi lack a centrosome and have much less flexible nuclei. Our findings provide a basis for modeling of flexible nuclear shapes in branched hyphal networks and may help in finding hard-to-evade targets to develop specific antioomycete strategies and achieve durable crop disease protection.



Sign in / Sign up

Export Citation Format

Share Document