The age and species composition of mangrove forest directly influence the net primary productivity and carbon sequestration potential

2019 ◽  
Vol 20 ◽  
pp. 101235 ◽  
Author(s):  
Sunil Kumar Sahu ◽  
Kandasamy Kathiresan
2019 ◽  
Vol 13 (2) ◽  
pp. 150-156
Author(s):  
Singkone Xayalath ◽  
Isao Hirota ◽  
Shinsuke Tomita ◽  
Michiko Nakagawa

Abstract Aims Accurate estimates of bamboo biomass and net primary productivity (NPP) are required to evaluate the carbon sequestration potential of bamboo forests. However, relevant data that are important for climate change mitigation, have rarely been collected in regions outside of East Asia and India. Information on seasonal patterns of NPP and its components will enable the quantification of factors that influence the carbon balance in bamboo forests. In this study, we quantified the aboveground biomass (AGB) and aboveground NPP of five major bamboo species in northern Laos using monthly data collected over a 12-month period. Methods All live culms in 10, 2 m × 2 m plots (for one monopodial bamboo species: Indosasa sinica) and 30 clumps per species (for four sympodial bamboo species: Bambusa tulda, Cephalostachyum virgatum, Dendrocalamus membranaceus and Gigantochloa sp.) were numbered and measured at breast height. We set 10 or 20 litter traps per species to collect litterfall. Censuses of dead and recruited culms and litterfall collection were performed once per month for 12 months. Important Findings The AGB was highest in I. sinica (59.87 Mg ha−1) and lowest in C. virgatum (11.54 Mg ha−1), and was mostly below the plausible global range for bamboos (32–256 Mg ha−1). The sympatric distribution of multiple bamboo species at the study sites may have suppressed the AGB in four of the five studied species. The aboveground NPP estimates were between 3.43 and 14.25 Mg ha−1 yr−1; those for D. membranaceus (8.20 Mg ha−1 yr−1) and I. sinica (14.25 Mg ha−1 yr−1) were comparable to mean global estimates for temperate evergreen forests (8.78 Mg ha−1 yr−1) and tropical moist forests (10.56 Mg ha−1 yr−1). High culm recruitment rates (15.20–23.39% yr−1) were major contributors to aboveground NPP estimates. Seasonal patterns of aboveground NPP were largely influenced by the phenology of the new culms. In the four sympodial bamboo species, new culms began to emerge following the onset of persistent rainfall, mainly in July and August. However, the sprouting of new culms in the monopodial species I. sinica followed a trend of increasing temperatures, mainly in March and April. Thus, our results indicate that bamboos have considerable potential for sequestering carbon in northern Laos, but that this potential may be affected by climate change.


2004 ◽  
Vol 31 (5) ◽  
pp. 415 ◽  
Author(s):  
Richard J. Williams ◽  
Lindsay B. Hutley ◽  
Garry D. Cook ◽  
Jeremy Russell-Smith ◽  
Andrew Edwards ◽  
...  

Tropical savannas cover a quarter of the Australian landmass and the biome represents a significant potential carbon sink. However, these savannas are subject to frequent and extensive fire. Fire regimes are likely to affect the productivity and carbon sequestration potential of savannas, through effects on both biomass and carbon emissions. The carbon sequestration potential has been estimated for some savanna sites by quantifying carbon storage in biomass and soil pools, and the fluxes to these pools. Using different techniques, previous work in these savannas has indicated that net ecosystem productivity [NEP, net primary productivity (NPP) less heterotrophic respiration] was about –3 t C ha–1 y–1 (i.e. a carbon sink). However, the impacts of fire were not accounted for in these calculations. Estimates of NEP have been combined with remotely-sensed estimates of area burnt and associated emissions for an extensive area of mesic savanna in Arnhem Land, NT, Australia. Combining NEP estimates with precise fire data provides an estimate of net biome productivity (NBP), a production index that includes carbon loss through disturbance (fire), and is thus a more realistic indicator of sequestration rate from this biome. This preliminary analysis suggests that NBP is approximately –1 t C ha–1 y–1 (i.e. a carbon sink). A reduction in the annual area burnt is likely to increase the sink size. Uncertainties surrounding these estimates of NBP and the implications of these uncertainties for land management in these extensive landscapes are discussed.


2014 ◽  
Vol 6 (3) ◽  
pp. 300-307
Author(s):  
Suresh Satyanarayana HEBBALALU ◽  
Dattatray M. BHAT ◽  
Ravindranath H. NIJAVALLI ◽  
Sukumar RAMAN

The intertidal vegetation along tropical and subtropical coast is defined as mangrove vegetation. India has a long coast line measuring 7516 km. The ecology of mangrove forest is relatively less studied. Mangrove systems are known to be one of the most productive systems in the world. The study aimed to estimate the carbon sequestration potential of a relatively protected sacred grove along the western coast of India, in Kagekanu, Kumta, Karnataka. One hectare permanent plot was established, with all woody stems > 1 cm dbh (diameter at breast height), which were marked and identified. Repeated measurements were made to register the growth and other parameters. Allometric equation was used to estimate the biomass, out of which 50% was considered as carbon content. A total of 1100 stems > 1 cm dbh, belonging to 4 species, were enumerated. There was an overall decline of 13.9% stems during the study period. Mean mortality rate was found to be 5.83 ± 1.85% and there was no recruitment. The biomass increased from 155.53 tons/ha to 164.28 tons/ha. There was a net gain of 4.38 tons. Avicinnia officinalis was found to contribute significantly to carbon sequestration.


2021 ◽  
Vol 494 ◽  
pp. 119343
Author(s):  
Adrián Pascual ◽  
Christian P. Giardina ◽  
Paul C. Selmants ◽  
Leah J. Laramee ◽  
Gregory P. Asner

2021 ◽  
Vol 13 (8) ◽  
pp. 1441
Author(s):  
Jin Han Park ◽  
Jianbang Gan ◽  
Chan Park

The net primary productivity (NPP) of a forest is an important indicator of its potential for the provision of ecosystem services such as timber, carbon, and biodiversity. However, accurately and consistently quantifying global forest NPP remains a challenge in practice. We converted carbon stock changes using the Global Forest Resources Assessment (FRA) data and carbon losses associated with disturbances and timber removals into an NPP equivalent measurement (FRA NPP*) and compared it with the NPP derived from the MODIS satellite data (MOD17 NPP) for the world’s forests. We found statistically significant differences between the two NPP estimates, with the FRA NPP* being lower than the MOD17 NPP; the differences were correlated with forest cover, normalized difference vegetation index (NDVI), and GDP per capita in countries, and may also stem from the NPP estimation methods and scopes. While the former explicitly accounts for carbon losses associated with timber removals and disturbances, the latter better reflects the principles of photosynthesis. The discrepancies between the two NPP estimates increase in countries with a low income or low forest cover, calling for enhancing their forest resource assessment capacity. By identifying the discrepancies and underlying factors, we also provide new insights into the relationships between the MOD17 NPP and global forest carbon stock estimates, motivating and guiding future research to improve the robustness of quantifying global forest NPP and carbon sequestration potential.


2015 ◽  
Vol 49 ◽  
pp. 247-259 ◽  
Author(s):  
Hongbing Luo ◽  
Xiaoling Liu ◽  
Bruce C. Anderson ◽  
Ke Zhang ◽  
Xiaoting Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document