scholarly journals Haptoglobin attenuates hemoglobin-induced heme oxygenase-1 in renal proximal tubule cells and kidneys of a mouse model of sickle cell disease

2015 ◽  
Vol 54 (3) ◽  
pp. 302-306 ◽  
Author(s):  
Narendranath Reddy Chintagari ◽  
Julia Nguyen ◽  
John D. Belcher ◽  
Gregory M. Vercellotti ◽  
Abdu I. Alayash
2001 ◽  
Vol 281 (5) ◽  
pp. F851-F859 ◽  
Author(s):  
Nathalie Hill-Kapturczak ◽  
Vijayalaksmi Thamilselvan ◽  
Feiyan Liu ◽  
Harry S. Nick ◽  
Anupam Agarwal

2001 ◽  
Vol 281 (5) ◽  
pp. F851-F859 ◽  
Author(s):  
Nathalie Hill-Kapturczak ◽  
Vijayalaksmi Thamilselvan ◽  
Feiyan Liu ◽  
Harry S. Nick ◽  
Anupam Agarwal

First published August 9, 2001; 10.1152/ajprenal.00140.2001.—Heme oxygenase-1 (HO-1) catalyzes the rate-limiting step in heme degradation, releasing iron, carbon monoxide, and biliverdin. Induction of HO-1 occurs as an adaptive and protective response to several inflammatory stimuli. The transcription factor activator protein-1 (AP-1) has been implicated in the activation of the HO-1 gene. To elucidate the molecular mechanism of HO-1 induction, we examined the effects of diferuloylmethane (curcumin), an inhibitor of the transcription factor AP-1. Surprisingly, curcumin by itself was a very potent inducer of HO-1. Curcumin has anti-inflammatory, antioxidant, and renoprotective effects. To evaluate the mechanism of curcumin-mediated induction of HO-1, confluent human renal proximal tubule cells were exposed to curcumin (1–8 μM). We observed a time- and dose-dependent induction of HO-1 mRNA that was associated with increased HO-1 protein. Coincubation of curcumin with actinomycin D completely blocked the upregulation of HO-1 mRNA. Blockade of nuclear factor-κB (NF-κB) with an IκBα phosphorylation inhibitor attenuated curcumin-mediated induction of HO-1 mRNA and protein. These data demonstrate that curcumin induces HO-1 mRNA and protein in renal proximal tubule cells. HO-1 induction by curcumin is mediated, at least in part, via transcriptional mechanisms and involves the NF-κB pathway.


2018 ◽  
Vol 32 (S1) ◽  
Author(s):  
Megan L. Eshbach ◽  
Amandeep Kaur ◽  
Youssef Rbaibi ◽  
Yash Agarwal ◽  
Qiangmin Zhang ◽  
...  

2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Archita Venugopal Menon ◽  
Hanting Tsai ◽  
Seungjeong Yang ◽  
Jonghan Kim

Haematologica ◽  
2015 ◽  
Vol 100 (12) ◽  
pp. 1508-1516 ◽  
Author(s):  
C. Evans ◽  
K. Orf ◽  
E. Horvath ◽  
M. Levin ◽  
J. De La Fuente ◽  
...  

2019 ◽  
Vol 317 (3) ◽  
pp. F743-F756 ◽  
Author(s):  
Sang Jun Han ◽  
Mihwa Kim ◽  
Vivette D. D’Agati ◽  
H. Thomas Lee

Acute kidney injury (AKI) due to renal ischemia-reperfusion (I/R) is a major clinical problem without effective therapy. Ginger is one of the most widely consumed spices in the world, and 6-shogaol, a major ginger metabolite, has anti-inflammatory effects in neuronal and epithelial cells. Here, we demonstrate our novel findings that 6-shogaol treatment protected against renal I/R injury with decreased plasma creatinine, blood urea nitrogen, and kidney neutrophil gelatinase-associated lipocalin mRNA synthesis compared with vehicle-treated mice subjected to renal I/R. Additionally, 6-shogaol treatment reduced kidney inflammation (decreased proinflammatory cytokine and chemokine synthesis as well as neutrophil infiltration) and apoptosis (decreased TUNEL-positive renal tubular cells) compared with vehicle-treated mice subjected to renal I/R. In cultured human and mouse kidney proximal tubule cells, 6-shogaol significantly attenuated TNF-α-induced inflammatory cytokine and chemokine mRNA synthesis. Mechanistically, 6-shogaol significantly attenuated TNF-α-induced NF-κB activation in human renal proximal tubule cells by reducing IKKαβ/IκBα phosphorylation. Furthermore, 6-shogaol induced a cytoprotective chaperone heme oxygenase (HO)-1 via p38 MAPK activation in vitro and in vivo. Consistent with these findings, pretreatment with the HO-1 inhibitor zinc protoporphyrin IX completely prevented 6-shogaol-mediated protection against ischemic AKI in mice. Taken together, our study showed that 6-shogaol protects against ischemic AKI by attenuating NF-κB activation and inducing HO-1 expression. 6-Shogaol may provide a potential therapy for ischemic AKI during the perioperative period.


Blood ◽  
2012 ◽  
Vol 120 (18) ◽  
pp. 3822-3828 ◽  
Author(s):  
Christopher J. Bean ◽  
Sheree L. Boulet ◽  
Dorothy Ellingsen ◽  
Meredith E. Pyle ◽  
Emily A. Barron-Casella ◽  
...  

Abstract Sickle cell disease is a common hemolytic disorder with a broad range of complications, including vaso-occlusive episodes, acute chest syndrome (ACS), pain, and stroke. Heme oxygenase-1 (gene HMOX1; protein HO-1) is the inducible, rate-limiting enzyme in the catabolism of heme and might attenuate the severity of outcomes from vaso-occlusive and hemolytic crises. A (GT)n dinucleotide repeat located in the promoter region of the HMOX1 gene is highly polymorphic, with long repeat lengths linked to decreased activity and inducibility. We examined this polymorphism to test the hypothesis that short alleles are associated with a decreased risk of adverse outcomes (hospitalization for pain or ACS) among a cohort of 942 children with sickle cell disease. Allele lengths varied from 13 to 45 repeats and showed a trimodal distribution. Compared with children with longer allele lengths, children with 2 shorter alleles (4%; ≤ 25 repeats) had lower rates of hospitalization for ACS (incidence rate ratio 0.28, 95% confidence interval, 0.10-0.81), after adjusting for sex, age, asthma, percentage of fetal hemoglobin, and α-globin gene deletion. No relationship was identified between allele lengths and pain rate. We provide evidence that genetic variation in HMOX1 is associated with decreased rates of hospitalization for ACS, but not pain. This study is registered at www.clinicaltrials.gov as #NCT00072761.


Blood ◽  
2021 ◽  
Author(s):  
Archita Venugopal Menon ◽  
Jing Liu ◽  
Hanting Phoebe Tsai ◽  
Lingxue Zeng ◽  
Seungjeong Yang ◽  
...  

Sickle cell disease (SCD) is characterized by increased hemolysis which results in plasma heme overload and ultimately cardiovascular complications. Here, we hypothesized that increased heme in SCD causes upregulation of heme oxygenase 1 (Hmox1) which consequently drives cardiomyopathy through ferroptosis, an iron-dependent non-apoptotic form of cell death. First, we demonstrated that the Townes SCD mice had higher levels of hemopexin-free heme in the serum and increased cardiomyopathy, which was corrected by hemopexin supplementation. Cardiomyopathy in SCD mice was associated with upregulation of cardiac Hmox1, and inhibition or induction of Hmox1 improved or worsened cardiac damage, respectively. Since free iron, a product of heme degradation through Hmox1, has been implicated in toxicities including ferroptosis, we evaluated the downstream effects of elevated heme in SCD. Consistent with Hmox1 upregulation and iron overload, levels of lipid peroxidation and ferroptotic markers increased in SCD mice, which were corrected by hemopexin administration. Moreover, ferroptosis inhibitors decreased cardiomyopathy, whereas a ferroptosis inducer erastin exacerbated cardiac damage in SCD and induced cardiac ferroptosis in non-sickling mice. Finally, inhibition or induction of Hmox1 decreased or increased cardiac ferroptosis in SCD mice, respectively. Together, our results identify ferroptosis as a key mechanism of cardiomyopathy in SCD.


2017 ◽  
Vol 312 (6) ◽  
pp. C733-C740 ◽  
Author(s):  
Megan L. Eshbach ◽  
Amandeep Kaur ◽  
Youssef Rbaibi ◽  
Jesús Tejero ◽  
Ora A. Weisz

Proximal tubule (PT) dysfunction, including tubular proteinuria, is a significant complication in young sickle cell disease (SCD) that can eventually lead to chronic kidney disease. Hemoglobin (Hb) dimers released from red blood cells upon hemolysis are filtered into the kidney and internalized by megalin/cubilin receptors into PT cells. The PT is especially sensitive to heme toxicity, and tubular dysfunction in SCD is thought to result from prolonged exposure to filtered Hb. Here we show that concentrations of Hb predicted to enter the tubule lumen during hemolytic crisis competitively inhibit the uptake of another megalin/cubilin ligand (albumin) by PT cells. These effects were independent of heme reduction state. The Glu7Val mutant of Hb that causes SCD was equally effective at inhibiting albumin uptake compared with wild-type Hb. Addition of the Hb scavenger haptoglobin (Hpt) restored albumin uptake in the presence of Hb, suggesting that Hpt binding to the Hb αβ dimer-dimer interface interferes with Hb binding to megalin/cubilin. BLAST searches and structural modeling analyses revealed regions of similarity between Hb and albumin that map to this region and may represent sites of Hb interaction with megalin/cubilin. Our studies suggest that impaired endocytosis of megalin/cubilin ligands, rather than heme toxicity, may be the cause of tubular proteinuria in SCD patients. Additionally, loss of these filtered proteins into the urine may contribute to the extra-renal pathogenesis of SCD.


Sign in / Sign up

Export Citation Format

Share Document