Overexpression of retinoid X receptor beta provides protection against oxidized low-density lipoprotein-induced inflammation via regulating PGC1α-dependent mitochondrial homeostasis in endothelial cells

2021 ◽  
Vol 188 ◽  
pp. 114559
Author(s):  
Yi Zeng ◽  
Chun Yan Wang ◽  
Jin Xu ◽  
Xiao Le Xu
2018 ◽  
Vol 120 (2) ◽  
pp. 1643-1650 ◽  
Author(s):  
Chun‐Yang Wu ◽  
Zhao‐Feng Zhou ◽  
Bin Wang ◽  
Zun‐Ping Ke ◽  
Zhong‐Chun Ge ◽  
...  

2009 ◽  
Vol 296 (6) ◽  
pp. C1329-C1337 ◽  
Author(s):  
Mark D. Mattaliano ◽  
Christine Huard ◽  
Wei Cao ◽  
Andrew A. Hill ◽  
Wenyan Zhong ◽  
...  

Oxidized low-density lipoprotein (OxLDL) has been implicated as a proatherogenic factor with a pathological role in the induction of endothelial dysfunction. Endothelial cells bind and uptake OxLDL primarily through the scavenger receptor lectin-like oxidized-low-density lipoprotein receptor-1 (LOX-1), which is believed to mediate critical effects of OxLDL in endothelial cells. To examine the biological events following LOX-1 activation by OxLDL, we used cDNA microarray analysis to globally analyze gene expression changes induced by OxLDL treatment of human aortic endothelial cell line (HAECT) cells overexpressing LOX-1. Consistent with reported functions of OxLDL, in control HAECT cells, OxLDL elicited gene changes in the oxidative stress pathway and other signaling pathways related to OxLDL. With OxLDL treatment, LOX-1-dependent gene expression changes associated with inflammation, cell adhesion, and signal transduction were observed. The transcripts of a number of cytokines and chemokines were induced, which included interleukin-8, CXCL2, CXCL3, and colony-stimulating factor-3. The secretion of these cytokines was confirmed by enzyme-linked immunosorbent assay analysis. In addition, our data revealed a novel link between LOX-1 and a number of genes, including Delta/notch-like epidermal growth factor repeat containing, stanniocalcin-1, cAMP response element modulator, and dual specificity phosphatase 1. Promoter analysis on the genes that changed as a result of LOX-1 activation by OxLDL allowed us to identify early growth response 1 and cAMP response element-binding protein as potential novel transcription factors that function downstream of LOX-1. Our study has enabled us to elucidate the gene expression changes following OxLDL activation of LOX-1 in endothelial cells and discover novel downstream targets for LOX-1.


Sign in / Sign up

Export Citation Format

Share Document